Motor Control Blockset™
Getting Started Guide

<

MATLAB&SIMULINK

R2020a ¢ } MathWorkse



X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Motor Control Blockset™ Getting Started Guide
© COPYRIGHT 2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History
March 2020 Online only New for Version 1.0 (Release R2020a)


https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Product Overview

1]

Model Configuration Parameters

2|

Model Configuration Parameters ... ..............................
Solver Configuration . ........... ... ... .
ADC Interface Configuration ............... . ... .. ... .. ...
PWM Interface Configuration .............. ... ... ... ... . .....
Hall Sensor Interface Configuration .............................
Quadrature Encoder Interface Configuration ......................
Serial Communication Interface Configuration .....................

NNN[}JNNN
Ul WNNDN

Estimate Control Gains from Motor Parameters

3|

Estimate Control Gains from Motor Parameters . ................... 3-2
Field-Oriented Control Autotuner ............ ... . ... ... 3-2
Simulink Control Design . .. ........ ..., 3-3
Model Initialization Script . .. ... ... . .. . 3-3

Implement Motor Speed Control by Using Field-Oriented
Control (FOC)

4

Implement Motor Speed Control Using Field-Oriented Control (FOC) ... 4-2
Models . ... 4-3
Required MathWorks Products . ............ ... ... .. ... 4-3
Prerequisites . .. ... o 4-4
Simulate Model . .. ... ... 4-4
Generate Code and Deploy Model to Target Hardware . .............. 4-5

Sensorless Field-Oriented Control of PMSM Using Sliding Mode Observer
and Flux Observer ......... ... ... ... .. . . .. .. 4-7

Field-Oriented Control of PMSM by Using Hall Sensor .............. 4-13

iii



iv

Contents

Field Oriented Control of PMSM by Using Quadrature Encoder . . . . ...
Field Weakening Control (with MTPA) of PMSM . ..................
Hall Offset Calibration for PMSM Motor . .........................
Quadrature Encoder Offset Calibration for PMSM Motor . ...........

Run 3-Phase AC Motors in Open-loop Control and Calibrate ADC Offset

Control Parameter Gain Tuning (Manual) in Hardware and Plant
Validation . ........... .. .. . . .

Monitoring Resolver Using Serial Communication .................
Field Oriented Control of PMSM by Using SI Units .................

Modeling Switching Dynamics in the Inverter by using Simscape
Electrical .. ...... ... .. . . .

Tune PI controllers by Using Field Oriented Control (FOC) Autotuner .

Use Motor Control Blockset™ to Generate Code for a Custom Target . .

4-52

4-62

4-71

4-76

4-81

4-92

4-94

Run PMSM in Open-loop Control and Calibrate ADC Offset

S|

Run PMSM in Open-loop Control and Calibrate ADC Offset ...........
Supported Hardware . ... ......... ..
Hardware Connections .. .............. .
Required MathWorksProducts . .......... ... ... ... ... .. .......

Model .. ..o

Pre-requisites for Running the Motor ............................
Run Models to Implement Open-loop Control . .....................
Run Models to Calibrate ADC Offset . ............................

UIUIUILI)'IUIUIUIUI
NOSOOWWWNDN

Estimate Motor Parameters by Using Motor Control Blockset

Parameter Estimation Tool

6/

Estimate Motor Parameters by Using Motor Control Blockset Parameter
Estimation Tool .......... ... .. ... ... . . . . . . .

Pre-requisites . ...... ...

Supported Hardware . ............ ..t
Required MathWorksProducts . ............. . ... ... ...,
Prepare Hardware ... ......... .0 e
Parameter Estimation Tool . ....... ... .. ... . ..



Prepare WOrkSpace . .. ... ..ottt 6-4
Deploy Target Models . . ....... ..o i 6-5
Estimate Motor Parameters . ............ ... .. .. . . . i 6-6
Save Estimated Parameters ............. ... ... . . ... ... 6-6
Concepts
7

Communication between Host and Target . ......................... 7-2
Host Model . ... ... 7-2
Target Model . ... ... e 7-2
Serial Communication Blocks .. .............. .. ... . . . . . .. ... 7-3
Fast Serial Data Monitoring . .......... .. ... .. ... 7-3
Find Communication Port . ........... ... .. ... . .. . . . .. 7-4
Open-loop and Closed-loop Control ............................... 7-8
Open-Loop Motor Control ... ....... ... ... . . . . .. 7-8
Closed-Loop Motor Control .......... ... ... .. 7-9
Open-Loop to Closed-Loop Transitions .......................... 7-10
Current Sensor ADC Offset and Position Sensor Calibration ...... ... 7-12
Current Sensor ADC Offset Calibration .......................... 7-12

Position Sensor Offset Calibration for Quadrature Encoder and Hall Sensor
..................................................... 7-12
Per-Unit System . ......... ... .. ... . . . e 7-15
What is Per-Unit System . ............ .. .. ... ... . . . . . . ... 7-15
Per-Unit System and Motor Control Blockset ..................... 7-15
Why Use Per-Unit System Instead of Standard SI Units .............. 7-17

Hardware Connections

8

Hardware Connections . . ............... .. . .. . ... 8-2
F28069 control card configuration .............................. 8-2
LAUNCHXL-F28069M and LAUNCHXL-F28379D configurations ....... 8-5
C2000 MCU Resolver Eval Kit[R2] .. .. .. .. oo 8-10

Dual Motor (Dyno) Control for PMSM ... ......................... 8-13






Product Overview

Design and implement motor control algorithms

Motor Control Blockset provides reference examples and blocks for developing field-oriented control
algorithms for brushless motors. The examples show how to configure a controller model to generate
compact and fast C code for any target microcontroller (with Embedded Coder®). You can also use
the reference examples to generate algorithmic C code and driver code for specific motor control
kits.

The blockset includes Park and Clarke transforms, sliding mode and flux observers, a space-vector
generator, and other components for creating speed and torque controllers. You can automatically
tune controller gains based on specified bandwidth and phase margins for current and speed loops
(with Simulink® Control Design™).

The blockset lets you create an accurate motor model by providing tools for collecting data directly
from hardware and calculating motor parameters. You can use the parameterized motor model to test
your control algorithm in closed-loop simulations.






Model Configuration Parameters




2 Model Configuration Parameters

Model Configuration Parameters

Update the configuration parameters for a Simulink model that you create, before simulating or
deploying the model to the controller.

In the Simulink window, click Hardware Settings in the HARDWARE tab to open the Configuration
Parameters dialog box and select the target hardware in the Hardware board field.

SIMULATION DEBUG MODELING FORMAT HARDWARE n
Hardware Board @ i Lﬁ

T1 Piccolo F2806x = Hardware Control Montor

Settings Panel & Tune v

ACYLA LA
HARDWAR

m
[%4]

OAR

D
U

o
0
m
9
1>
r = |
m

R N HADDWARE
RUN ON HARDWARE

Solver Configuration

In the Solver tab of the Configuration Parameters dialog box, for a fixed-step discrete solver, type
auto in the Fixed-step size (fundamental sample time) field.

&4 Configuration Parameters: mcb_pmsm_foc_hall_f28379d/Configuration (Active) — O *

Q

Solver

Simulation time

Data Import/Export

Math and Data Types
» Diagnostics
Hardware Implementation

Model Referencing Type: |Fixed-step v | Solver: |discrete (no continuous states) h
Simulation Target

» Code Generation ¥ Solver details

» Coverage

2-2

Start time: (0.0 Stop time: |8

Saolver selection

Fixed-step size (fundamental sample time): |auto

ADC Interface Configuration

If you connect analog inputs (current or voltage sensors) to the hardware board, configure the related

ADC parameters in the Configuration Parameters dialog box by using the following steps:

1 Open the Hardware Implementation tab.

2 Set the ADC clock prescaler and check the ADC clock frequency. Ensure that the displayed ADC
clock frequency is less than the maximum value specified in the device datasheet.

This example shows the ADC configuration for LAUNCHXL-F28379D board. The maximum operating
frequency of ADCCLK for TMS320F28379D targets is 50 MHz.



Model Configuration Parameters

Hardware board settings

¥ Target hardware resources

Groups

Build options Select the CPU core which controls ADC_A module: | Auto
Clocking

ADC A ADC clock prescaler (ADCCLEK): [SYSCLKOUT/S.0
_ﬂl[}c:B ADC clock frequency in MHz: 40

ADC_C Offset: |AdcaRegs ADCOFFTRIM bit. OFFTRIM
i INT pulse control: |Late interrupt pulse

CMPS55

DAC S0OC high priority: |All in round robin mode

ePWM ADCEXTSOC external pin; |GPIO0

eCAP

—fMrmn

PWM Interface Configuration

If you connect PWM outputs from target device to the inverter, configure the related PWM
parameters in the Configuration Parameters dialog box by using the following steps:

1 Open the Hardware Implementation tab.

2 Set the ePWM clock divider to SYSCLKOUT/1.

3  Update the following PWM pin assignment fields.

ePWM pin settings Property

PWM1A pin assignment Gate pulse for Phase-A high-side transistor
PWM1B pin assignment Gate pulse for Phase-A low-side transistor
PWM2A pin assignment Gate pulse for Phase-B high-side transistor
PWM2B pin assignment Gate pulse for Phase-B low-side transistor
PWM3A pin assignment Gate pulse for Phase-C high-side transistor
PWM3B pin assignment Gate pulse for Phase-C low-side transistor

2-3



2 Model Configuration Parameters

Hardware board settings

¥ Target hardware resources

Groups
Build options
Clocking
ADC A
ADC B
ADC _C
ADC D
CMPSS
DAC
ePWM
eCAF
e(lEP
I2C A
I2C B
SCLA
SCILB
i
SCLD
SPLA
SPLE
o 2 O
eCAN_A
eCAN B

EPWM clock divider (EPWMCLKDIV): |SYSCLKOUT/

TZ1 pin assignment: |None

TZ2 pin assignment: |None

TZ3 pin assignment: |None

SYMCI pin assignment: |None

PWM1A pin assignment:
PWM1B pin assignment:
PWMZ2A pin assignment:
PWM2E pin assignment:
PWM3A pin assignment:
PWM3B pin assignment:

\GPIO5

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4

PWM4A pin assignment:
PWMA4E pin assignment:
PWMbA pin assignment:
PWM5E pin assignment:
PWMGA pin assignment:
PWMEEB pin assignment;

GPIOG
GPIO7
GPI08
GPIOY
GPIO10
GPIO11

Hall Sensor Interface Configuration

If you connect a Hall sensor to the hardware board, configure the related parameters in the
Configuration Parameters dialog box by using the following steps:

1 Open the Hardware Implementation tab.

2 Select the eCAP group under Hardware board settings > Target hardware resources.

3 Update the following ECAP pin assignment fields:

ECAP pin assignment field Field value
ECAPI1 pin assignment Hall A
ECAP2 pin assignment Hall B
ECAP3 pin assignment Hall C

2-4




Model Configuration Parameters

The following example shows the eCAP configuration for a Hall sensor connected to DRV8312 board
with a F28069 Piccolo MCU control card:

Solver Hardware board: | Tl Piccolo F2806x =
Data Import/Export

Math and Data Types
» Diagnostics Device vendor: Texas Instruments - | Device type: |C2000 -

Code Generation system target file: ertilc

Hardware Implementation » Device details

Model Referencing
Simulation Target

; Hardware board settings
» Code Generation

» Coverage » Operating system/scheduler
Simscape
Simscape Multibody 1G v Target hardware resources
» Simscape Multibody
Groups
Build options ECAP1 pin assignment: [GP1024 -
Clocking ECAP2 pi i . |GPIO25
ADC pin assignment: -
COMP ECAP3 pin assignment: |GPIO26 -
eCAN_A
eCAP
ePWM
12C

Quadrature Encoder Interface Configuration

If you connect a Quadrature Encoder sensor to the hardware board, configure the related parameters
in the Configuration Parameters dialog box by using the following steps:

1 Open the Hardware Implementation tab.

2 Select the eQEP group under Hardware board settings > Target hardware resources.

3  Update the following EQEP pin assignment fields:

EQEP pin assignment field Property

EQEPI1A pin assignment Quadrature Encoder Channel A
EQEP1B pin assignment Quadrature Encoder Channel B
EQEP1I pin assignment Quadrature Encoder Index

The following example shows the eQEP configuration for a quadrature encoder sensor connected to a
LAUNCHXL-F28379D board:

2-5



2

Model Configuration Parameters

& Configuration Parameters: rch_pmsm_foc_gep_f28379d/Configuration (Active) — | X
Salver Hardware board: | Tl Delfino F28379D LaunchPad -

[,

»
»

Data Import/Export

Math and Data Types
Diagnostics Device vendor: Texas Instruments - | Device type: C2000 -

Code Generation system target fila: grttlc

Hardware Implementation
Model Referencing
Simulation Target

Code Generation

» Device details

Hardware board settings

Coverage ¥ Target hardware resources
Groups
Build options EQEP1A pin assignment: |GPI020 |~
Clocking ) ) _
ADC_A EQEP1E pin assignment: |GPI1021 | -
ADC_B EQEP1S pin assignment: |[None | -
ADC_C EQEP1I pin assignment: | GPIO99 v
e EQEP2A pin assignment: |GPI1024 | -
DAC
aPWM EQEPZB pin assignment: | GPIO25 | -
eCAP EQEPZS pin assignment: | GPIO27 | -
eQEP EQEP2! pin assignment: |GPI026 B
12C_A ) )
12C_B EQEP3A pin assignment: | GPIO28 | -
SCILA EQEP3E pin assignment: | GPIO29 | -
SCI_B EQEP3S pin assignment: |GPI1030 -
e EQEP3I pin assignment: |GPI031 | -
SCILD

Serial Communication Interface Configuration

If you are generating code and using serial communication between host and target Simulink models,
configure the related parameters in the Configuration Parameters dialog box by using the following
steps:

1 Open the Hardware Implementation tab.

2 Select the SCI_A group under Hardware board settings > Target hardware resources.

3 Update the following SCI A settings:

SCI_A settings Property

Suspension mode Serial suspension mode
Number of stop bits Stop bits

Parity mode Parity




Model Configuration Parameters

Character length bits Data bits

Desired baud rate in bits/sec Serial communication baud rate
Pin assignment(Tx) Output pin for Serial Transmit
Pin assignment(Rx) Input pin for Serial Receive

For example, use the following SCI A configuration for a Hall sensor connected to a F28379D

LaunchPad board:
@ Configuration Parameters: mcb_pmsm_foc_hall_f2837%d/Configuration (Active) — O x>
|Q Search |
Solver Hardware board: |TI Delfino F28379D LaunchPad [+] =2

Data Import/Export
Math and Data Types
» Diagnostics Device vendor: Texas Instruments = | Device type: C2000 -
Hardware Implemeantation
Model Referencing
Simulation Target

Code Generation system target file: ert.tlc

» Device details

: Hardware board settings
» Code Generation

» Coverage ¥ Target hardware resources

Groups
Build options [] Enable loopback
Clocking S N o |F
ADC_A uspension mode: | ree_run | - |
ADC B Number of stop bits: |1 | v |
ADC_C Parity mode: |None | - |
e Character length bits: |8 | - |
DAC
ePWM Desired baud rate in bits/sec: |596 |
eCAP Baud rate prescaler (BRR = (3CIHBAUD << &) | SCILBAUD)): 4
sQEP Closest achievable baud rate (LSPCLK/(BRR+1)8) in bits/sec: 5000000
12C_A o
12¢_B Communication mode: |Raw_data | - |
SCLA [] Blocking mode
sCi B Data byte order: |Litt|e_Endian | - |
SCI_C } .

- Pin assignment({Tx): |GF’IO42 | - |
SCI_D
SPIA Pin assignment(Rx): |GPI043 [~]
SPI_B







Estimate Control Gains from Motor
Parameters




3 Estimate Control Gains from Motor Parameters

Estimate Control Gains from Motor Parameters

Perform control parameter tuning for the speed and torque control loops that are part of the Field-
Oriented Control (FOC) algorithm. Motor Control Blockset provides you with multiple methods to
compute the control loop gains from the system or block transfer functions that are available for the
motors, inverter, and controller:

* Use the Field Oriented Control Autotuner block.

* Use Simulink Control Design.

* Use the model initialization script.

Motor,
inverter, and

target
parameters

FOC
autotuner
Control Control loop
execution time gains
Model Simulink®
initialization Control

Delays and per- script
unit system
values

Design™

%

Field-Oriented Control Autotuner

The Field-Oriented Control Autotuner block of Motor Control Blockset enables you to automatically
tune the PID control loops in your Field-Oriented Control (FOC) application in real time. You can
automatically tune the PID controllers associated with the following loops (for more details, see
“Tune PID Controllers by Using Field-Oriented Control Autotuner”):

* Direct-axis (d-axis) current loop

* Quadrature-axis (g-axis) current loop
e Speed loop

For each loop that the block tunes, the Field-Oriented Control Autotuner block performs the
autotuning experiment in a closed-loop manner without using a parametric model associated with
that loop. The block enables you to specify the order in which the block tunes the control loops. When
the tuning experiment runs for one loop, the block has no effect on the other loops. For more details
about FOC autotuner, see Field Oriented Control Autotuner and “Tune PI controllers by Using Field
Oriented Control (FOC) Autotuner” on page 4-92

3-2



Estimate Control Gains from Motor Parameters

Simulink Control Design

Simulink Control Design enables you to design and analyze the control systems modeled in Simulink.
You can automatically tune the arbitrary SISO and MIMO control architectures, including the PID
controllers. You can deploy PID autotuning to the embedded software to automatically compute the
PID gains in real time.

You can find the operating points and compute the exact linearizations of the Simulink models at
different operating conditions. Simulink Control Design provides tools that let you compute the
simulation-based frequency responses without modifying your model. For details, see https://
www.mathworks.com/help/slcontrol/index.html

Model Initialization Script

This section explains how the Motor Control Blockset examples estimate the control gains needed to
implement field-oriented control. For example, for a PMSM that is connected to a quadrature
encoder, these steps describe the procedure to compute the control loop gain values from the system
details by using the initialization script:

1 Open the initialization script (.m) file of the example in the MATLAB® window. When you run an
example, use the following steps to find the associated script file name:

a Select Modeling > Model Settings > Model Properties to open the model properties
window.

¥4 mch_pmsm_foc_qep_f28060m - Simulink

SIMULATION DEBUG MODELING FORMAT HARDWARE
/ Find « i T
@ = = ; © #)
Maodel ¥ Compare Madel Data Model Schedule 1T Model ; Insert Atomic
Advisor = 1} Environment = Editor Explarer Editor Settings * Subsystem Subsystem

eIV MO HESI {g Model Settings Ctrl+E
mech_pmsm_foc_gep_f28069m

® ™| mcb_pmsm_foc_gep_f28069m P

E Model Properties

o

b In the Model Properties dialog box, navigate to the Callbacks tab > InitFcn to find the
name of the script file that Simulink launches before running the example.

3-3


https://www.mathworks.com/help/slcontrol/index.html
https://www.mathworks.com/help/slcontrol/index.html

3 Estimate Control Gains from Motor Parameters

"

Model Properties: mcb_pmsm_foc_gep_f22069m @
Main Callbacks History Description External Data
Model callbacks Model initialization function:
PreLoadFcn mcb_pmsm_foc_gep_f28069m_data; I
PostLoadFon
InitFcn™
StartFcn
PauseFcn
ContinueFcn
StopFcn
PresaveFcn
PostSaveFcn
CloseFcn
OK Cancel Help Apply

2 This figure shows an example of the initialization script (.m) file:

3-4



Estimate Control Gains from Motor Parameters

EDITOR PUBLISH
':E:' & E Lql Find Files Insert &l fx - D’ % _ (I:?
=l v fGoTew Comment % % #1 o
New Open Save |!Compare ele £ = Breakpoints Run Run and @Advance Run and
- - ~ = Print ¥ _{ Find = Indent - - Advance Time
FILE MNAVIGATE EDIT BREAKPOINTS RUM a
E | mch_pmsm_foc_gep_f2806%m_data.m ?‘{l +]
__1_ R R R g d b R e e |
2 % Model PMSM Field Criented Control
2 % Description Set Parameters for PMSM Field COriented Control
4 % File name mck pmsm foc gep f28065m data.m
5 % Copyright 2020 The MachWorks, Inc.
6
T %% Parameters needed for Offset computation are
g % target.PWM Counter Period - PWM counter value for epwm blocks
g % target.CPU fregquency — CPU freguency of the microcontroller
1d x Ts - Control sample time
11 % PU_System.N_base - Base speed for per unit conversion
12 % pmsm.p - Number pole palrs in the motor
13
14 % Other parameters are not mandatory for offset computation
15
16 %% Set PWM Switching frequmency
I = PWM_frequency = 20e3; %Hz // converter s/w freg
18 - T _pwm = 1/PWM_frequency; %3 // PWM switching time period
19
20 %% Set Sample Times
21 — Ts = T_pvwm; iszec S/ simulation time step for controller
22 = Tz simulink =T pwm/2; Esec S simulation time step for model simulation
23 - Ts_motor = T_pwm/2; %Sec S/ Simulation sample time
24 — Ts inverter = T_pwm."Z; isec S/ simulation time step for average value inverter
25 = Ts speed = 10*Ts; %5ec f{ Bample time for speed controller
26
27 %% Set data type for controller & code-gen
28 % dataType = fixdc(l,32,17): % Fixed point code-generation
2 datalype = 'single'; % Floating point code-gensration
30
20 %% System Parameters // Hardware parameters
32
33 - pmsm = mch SetPMSMMotorParameters ("ELY1T71D");
34 - pmsm. PositionOffset = 0.17;
35
36 %% Parameters below are not mandatory for offset computation
27
S8l = inverter = mch SetInverterParameters('DEVS312-CZ-KIT'")»
39
40 = inverter.ADCOffsetCalibEnable = 1; % Enable: 1, Disakle:0
41
42 — target = mck SetProcessorDetalls ('F22065M',PWM fregquency):
43
44 %% Derive Characteristics
45 — pmsm.N base = mck getBaseSpeed (pmsm, inverter); %rpm // Base speed of motor at given Vdc
48 % mcb_getCharacteristics (pmsm, inverter);
47
43 %% PU System details // Set base wvalues for pu conversion
449
50 — FO_System = mchk SetPUSystem(pmsm, inverter);
51
52 %% Controller design // Get ballpark wvalues!
a3
34 - FI params = mcb.internal.S5etControllerParameters (pmsm, inverter, PU System, T pwm,Ts,Ts_speed) :
55
o6 fUpdating delays for simulation
=l = PI params.delay Currents = int32 (Ts/Ts_simulink); 3-5
58 - PI_params.delay_Speed = intc32 th_speed/Ts_sim}Jlink}:
59
(14 % mch getControllnalysis (pmsm, inverter, PU System,PI params,Ts,Ts_speed):




3 Estimate Control Gains from Motor Parameters

3-6

3 Use the Workspace to edit the control variables values. For example, to update Stator resistance

(Rs), use the variable pmsm to add the parameter value to the Rs field.

Workspace

Mame = Value
1" dataType 'single’
I_LJ inverter Tx1 struct

t| Pl params  Tx1 struct

.| pmsm Tx1 struct

LEIPU System  Tx7 struct
HH PWM_freq... 20000
HH T _pwm 5.0000e-05
LEJ target 1x1 struct
HH Ts 5.0000e-05
HH Ts_inverter  2.5000e-05
HH Ts_motor  2.5000e-05
HH Ts_simulink  2.5000e-05
HHTs speed  5.0000e-04

|

| prmsm '»‘f|

11 struct with 17 fields

Field = Yalue
[ medel Teknic-2310P"
E|E| &N ‘003
Hp 4
% Rs 03600 |
Ld 2.0000e-04
H Lq 2.0000e-04
HH 7.0616e-06
He 2.6360e-06
HH ke 4.6400
HH ke 0.2740
HH I_rated 7.1000
EE| M_max RO00
HH PositionOffset 0.1700
HH qEpslits 1000
HH Fluxpm 0.0064
HH T_rated 0.2724
HH N base 3902

4 The model initialization script associated with a target model calls these functions and sets up

the workspace with the necessary variables:



Estimate Control Gains from Motor Parameters

Model initialization script

Function called by model
initialization script

Details

Script associated with a
target model

mcb_SetPMSMMotorParame
ters

Input to the function is motor
type (for example, BLY171D).

The function populates a
structure named pmsm in the
MATLAB workspace, which is
used by the model.

It also computes the
permanent magnet flux and
rated torque for the selected
motor.

You can extend the function
by adding an additional
"switch-case" for a new
motor.

This function also loads the
structure motorParam,
obtained by running
parameter estimation, to the
structure pmsm. If the
structure motorParam is not
available in the MATLAB
workspace, the function
loads the default parameters.

mcb_SetInverterParamet
ers

Input to the function is
inverter type (for example,
BoostXL-DRV8305).

The function populates a
structure named inverter in
the MATLAB workspace,
which is used by the model.

The function also computes
the inverter resistance for
the selected inverter.

You can extend the function
by adding an additional
"switch-case" for a new
inverter.




3 Estimate Control Gains from Motor Parameters

3-8

Model initialization script

Function called by model
initialization script

Details

mcb _SetProcessorDetail
S

Inputs to the function are
processor type (for example,
F28379D) and the desired
PWM switching frequency.

The function populates a
structure named target in the
MATLAB workspace, which is
used by the model.

The function also computes
the PWM counter period that
is a parameter for the ePWM
block in the target model.

You can extend the function
by adding an additional
"switch-case" for a new
processor.

mcb getBaseSpeed

Inputs to the function are
motor and inverter
parameters.

The function computes the
base speed for PMSM.

Type help

mcb _getBaseSpeed at the
MATLAB command window
for more details.

mcb SetPUSystem

Inputs to the function are
motor and inverter
parameters.

The function sets the base
values of the per-unit system
for voltage, current, speed,
torque, and power.

The function populates a
structure named PU System
in the MATLAB workspace,
which is used by the model.




Estimate Control Gains from Motor Parameters

Model initialization script

Function called by model
initialization script

Details

1lerParameters

mcb.internal.SetContro

Inputs to the function are
motor and inverter
parameters, per-unit system
base values, PWM switching
time period, sample time for
the control system, and
sample time for the speed
controller.

The function computes the PI
parameters (Kp, Ki) for the
field-oriented control
implementation.

The function populates a

structure named PI params
in the MATLAB workspace,
which is used by the model.

Type help
mcb.internal.SetContro
1lerParameters at the
MATLAB command window
for more details.

This table explains the useful variables for each control parameter that you can update:

Note You can try starting MATLAB in the administrator mode on Windows® system, if you are unable
to update the model initialization scripts associated with the example models.

Control parameter category

Motor parameters

Control parameter name MATLAB Workspace Variable
Manufacturer’s model number |pmsm.model
Manufacturer’s serial number |pmsm.sn

Pole pairs pmsm.p
Stator resistance (Ohm) pmsm.Rs
d-axis stator winding inductance | pmsm.Ld
(Henry)

g-axis stator winding inductance | pmsm.Lq
(Henry)

Back emf constant pmsm.Ke

(V line(peak)/krpm)

Motor Inertia (kg.m?) pmsm.J
Friction constant (N.m.s) pmsm.F
Permanent Magnet Flux (WB) pmsm.FluxPM

3-9



3 Estimate Control Gains from Motor Parameters

3-10

Control parameter category

Control parameter name

MATLAB Workspace Variable

Trated pmsm.T rated
Nbase pmsm.N base
Irated pmsm.I rated

Position decoders

QEP index and Hall position
offset correction

pmsm.PositionOffset

Quadrature encoder slits per
revolution

pmsm.QEPSIits

Inverter parameters

Manufacturer’s model number |inverter.model
Manufacturer’s serial number |inverter.sn
DC link voltage of the inverter |inverter.V dc

(V)

Maximum measurable currents
by ADCs (A)

inverter max

Maximum permissible currents
by inverter (A)

inverter.I trip

On-state resistance of MOSFETs
(Ohm)

inverter.Rds on

Shunt resistance for current
sensing (Ohm)

inverter.Rshunt

Per-phase board resistance seen
by motor (Ohm)

inverter.R_board

Current scaling inverterMaxADCCnt
ADC Offsets for current sensor |inverter.CtSensAOffset
(Ia and Ib)

inverter.CtSensBOffset

Enable Auto-calibration for
current sense ADCs

inverterADCOffsetCalibEnable

Processor

Manufacturer’s model number

target.model

Manufacturer’s serial number |target.sn
CPU Frequency target.CPU frequency
PWM frequency target. PWM frequency

PWM counter period

target. PWM Counter Period

Per-Unit System

Base voltage (V)

PU System.V base

Base current (A)

PU System.I base

Base speed (rpm)

PU System.N base

Base torque (Nm)

PU System.T base

Base power (Watts)

PU System.P base

Data-type for target device

Data-type (Fixed-point Or
Floating-point) selection

dataType




Estimate Control Gains from Motor Parameters

Control parameter category

Control parameter name

MATLAB Workspace Variable

Sample time values

Switching frequency for PWM frequency
converter

PWM switching time period T pwm
Sample time for current Ts
controllers

Sample time for speed Ts speed
controller

Simulation sample time Ts simulink
Simulation sample time for Ts motor
motor

Simulation sample time for Ts inverter

inverter

Controller parameters

Proportional gain for Iq
controller

PI params.Kp_i

Integral gain for Iq controller

PI params.Ki i

Proportional gain for Id
controller

PI params.Kp id

Integral gain for Id controller

PI params.Ki id

Proportional gain for Speed
controller

PI params.Kp speed

Integral gain for Speed
controller

PI params.Ki _speed

Proportional gain for Field
weakening controller

PI params.Kp fwc

Integral gain for Field
weakening controller

PI params.Ki fwc

Note For the pre-defined processors and drivers, the model initialization script uses the default

values.

The model initialization script uses these functions for performing the computations:

Control parameter category

Function

Functionality

Base speed of the motor

mcb _getBaseSpeed

Calculates the base speed of
PMSM at the rated voltage and
rated load.

For details, type help
mcb_getBaseSpeed at the
MATLAB command prompt.

3-11



3 Estimate Control Gains from Motor Parameters

3-12

Control parameter category

Function

Functionality

Motor characteristics for the
given motor and inverter

mcb _getCharacteristics

Obtain these characteristics of
the motor.

* Torque vs speed
characteristics

* Power vs speed
characteristics

* Iqvsspeed and Id vs speed
characteristics

For details, type help
mcb _getCharacteristics at
the MATLAB command prompt.

Control algorithm parameters

mcb.internal.SetControll
erParameters

Compute the gains for these PI
controllers:

* Current (torque) control loop
gains (Kp, Ki), for currents Id
and Iq

» Speed control loop gains (Kp,
Ki)

* Field weakening control
gains (Kp, Ki)

For details, type help
mcb.internal.SetControll
erParameters at the MATLAB
command prompt.

Control analysis for the motor
and inverter you are using

mcb_getControlAnalysis

Performs frequency domain
analysis for the computed gains
of PI controllers used in the
field-oriented motor control
system.

Note This feature requires
Control System Toolbox™.

For details, type help
mcb_getControlAnalysis at
the MATLAB command prompt.

Obtain Base Speed

The function mcb _getBaseSpeed computes the base speed of the PMSM at the given supply voltage.
The function calculates the base speed of the PMSM at the rated voltage and rated load, which helps
you to develop the control algorithm for the motor.




Estimate Control Gains from Motor Parameters

When you call this function (for example, base speed = mcb getBaseSpeed(pmsm,inverter)),
it returns the base speed for the given combination of PMSM and inverter. The function accepts the
following inputs:

* PMSM parameter structure.
* Inverter parameter structure.
These equations describe the computations that the function performs:

2 2 2
Imax = Idﬁmax"' qumax

Vdc

Vinax = W = RgImax

Vmax

J(Lglo) + (Lalg + Ap)?

Whase =

where:

*  Inax is the maximum phase current (Amperes).

* Ij max is the maximum d-axis phase current (Amperes).

* Ig max is the maximum g-axis phase current (Amperes).

*  Vnax i the maximum line to neutral voltage (Volts).

* V4. is the dc voltage supplied to the inverter (Volts).

* R is the stator resistance (Ohms).

*  Wpgse 1S the base value of the rotor speed (Radians/ sec).

* Lgand Lg are the d-axis and g-axis stator winding inductances (Henry).
* Iy and I, are the d-axis and g-axis currents (Amperes).

* A is the permanent magnet flux linkage (Weber).
Obtain Motor Characteristics

The function mcb _getCharacteristics calculates the torque and speed characteristics of the
motor, which helps you to develop the control algorithm for the motor.

The function returns the following characteristics the given PMSM:

» Torque vs Speed
* Power vs Speed
* I;vs Speed
* I;vs Speed

3-13



3 Estimate Control Gains from Motor Parameters

3-14

Torgue (Nm)

2 Og'orqut-Spud Characteristics for Anaheim-BLY17 1D-24V-4000

0.055

0.05

5

0.045
0.04 \
0.035 \
,
~,
003t b
0.025
] 2000 4000 6000 800D 10000 12000
Speed (rpm)
- lq Vs Speed

—— @l
hﬁTnu
—

.\

0

1000 2000 3000 4000 5000 6000 7000 8000 900D
Speed (rpm)

Obtain Controller Gains

Power (Watls)

3

30 -

L
o

=
(=

(5.

(=]

0

5l“«:m.w.-m‘-S;uod Characteristics for Anaheim-BLY171D-24V-4000

B

=
w
T

1000 2000 3000 4000 5000 6000 7000 8000 9000
Speed (rpm)

The function mcb.internal.SetControllerParameters computes the gains for the PI controllers

used in the field-oriented motor control systems.

When you call this function (for example, PI _params
mcb.internal.SetControllerParameters(pmsm,inverter,PU System,T pwm,Ts control
,Ts_speed)), it returns the gains of these PI controllers used in the FOC algorithm:

» Direct-axis (d-axis) current loop

* Quadrature-axis (g-axis) current loop
* Speed loop

* Field-weakening control loop

The function accepts these inputs:

* pmsm object

* inverter object



Estimate Control Gains from Motor Parameters

* PU system params
* T pwm

* Ts control

* Ts speed

The function does not plot any characteristic.

The design of compensators depends on the classical frequency response analysis applied to the
motor control systems. We used the Modulus Optimum (MO) based design for the current controllers
and the Symmetrical Optimum (SO) based design for the speed controller.

The function automatically computes the other required parameters (for example, bandwidth,
damping) based on the input arguments.

Perform Control Analysis

The function mcb _getControlAnalysis performs the basic control analysis of the PMSM FOC
current control system. The function performs frequency domain analysis for the computed PI
controller gains used in the field-oriented motor control systems.

Note This function requires the Control System Toolbox.

When you call this function (for example,

mcb _getControlAnalysis(pmsm,inverter,PU System,PI params,Ts,Ts speed)),it
performs the following functions for the current control loop or subsystem:

* Transfer function for the closed-loop current control system

* Root locus

* Bode diagram

* Stability margins (PM & GM)

* Step response

* PZ map

The function plots the corresponding plots:

3-15



3 Estimate Control Gains from Motor Parameters

0% Root Locus
087 " ors 066 052 " 036 018
ik ]
08 | s
094 2
o8 E b
£
T 041 =1
k4l 0.985 g
g 02 .
PoMgS| 1750405 150405 1250405 16405 7.5e+04 50404 250+04 4 i ' ' L i L 4
100
i 0 T T T T T T T
§ o2 .
£ asf 2
g 0.985
04 . =
£ § .
08 1 o135 F .
094 §
08 . & 10} .
al < 225
Nl , ore 066 052 L 036 0.18 s | | | | ! | !
20 15 -10 5 1072 102 107! 10° 10" 102 10* 10* 10°
Real Axis (seconds™") 10 Frequency (rad/s)
Unit-Step Response of Current < 10% Pole-Zero Map
14 T T T T T T T T 15 T T T T T
096 052 086 076 058 03s
x
12f 1 0984
4 )
1 -~
—._g 05 099 i
08 . g
g ?.434_ & Se+04 da+04 30+04 20404 e+04 i«
06 . z
£
E 057 0.996 .
0al .
4 -
0zt - 0984
x
) | | ! | | | | i | ol 096 ; 092 i 0.86 , 076 058 035
0 02 04 06 1 2 14 16 18 2 £ 5 4 3 2 4 [)
t Sec (seconds) 0% Real Axis (seconds™") «10%

3-16



Implement Motor Speed Control by
Using Field-Oriented Control (FOC)

* “Implement Motor Speed Control Using Field-Oriented Control (FOC)” on page 4-2

* “Sensorless Field-Oriented Control of PMSM Using Sliding Mode Observer and Flux Observer”
on page 4-7

* “Field-Oriented Control of PMSM by Using Hall Sensor” on page 4-13

* “Field Oriented Control of PMSM by Using Quadrature Encoder” on page 4-20

* “Field Weakening Control (with MTPA) of PMSM” on page 4-27

» “Hall Offset Calibration for PMSM Motor” on page 4-39

* “Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-45

* “Run 3-Phase AC Motors in Open-loop Control and Calibrate ADC Offset” on page 4-52

* “Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation” on page 4-62
* “Monitoring Resolver Using Serial Communication” on page 4-71

* “Field Oriented Control of PMSM by Using SI Units” on page 4-76

*  “Modeling Switching Dynamics in the Inverter by using Simscape Electrical” on page 4-81
* “Tune PI controllers by Using Field Oriented Control (FOC) Autotuner” on page 4-92

* “Use Motor Control Blockset™ to Generate Code for a Custom Target” on page 4-94



4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Implement Motor Speed Control Using Field-Oriented Control
(FOC)

SpeedfefoL>

4-2

Field-Oriented Control (FOC), also known as vector control, is a technique used to control Permanent
Magnet Synchronous Motor (PMSM) motors. FOC provides good control capability over the full
torque and speed ranges. The FOC implementation requires transformation of stator currents from
the stationary reference frame to the rotor flux reference frame (also known as d-q reference frame).

Speed control and torque control are the most commonly used control modes of FOC. The position
control mode is less common. Most of the traction applications use the torque control mode in which
the motor control system follows a reference torque value. In the speed control mode, the motor
controller follows a reference speed value and generates a torque reference for the torque control
that forms an inner subsystem. In the position control mode, the speed controller forms the inner
subsystem.

FOC algorithm implementation requires real time feedback of the currents and rotor position.
Measure the current and position by using sensors. You can also use sensorless techniques that use
the estimated feedback values instead of the actual sensor-based measurements.

This figure shows the Field-Oriented Control architecture for PMSM.

ref
Iq

ref

Pl controller
(current Iq)

q
lVDC

A Duty Cycles
Pl controller Vot
(current Id) d
1

d .
sinB,

Pl controller
(speed)

Inverse park
transform

Space vector
generator

V,

a

Vb Vc

Park
transform

Clarke
transform

Sine-cosine
lookup

Sensor P Position
decoder N Feedback

This example implements the Field-Oriented Control technique to control the speed of a three-phase
Permanent Magnet Synchronous Motor (PMSM). Field-Oriented Control (FOC), also known as vector
control, is a technique used to control a PMSM to provide good control capability over the full torque
and speed ranges. The FOC implementation requires transformation of stator currents from the
stationary reference frame to the rotor flux reference frame. You also need real-time feedback of the
rotor position to implement an FOC algorithm. You can measure the position feedback value by using
either a sensor-based or sensorless approach.



Implement Motor Speed Control Using Field-Oriented Control (FOC)

This example uses the sensorless position estimation technique. You can select either the sliding
mode observer or the flux observer to estimate the position feedback for the FOC algorithm used in
the example.

The Sliding Mode Observer (SMO) block generates a sliding motion on the error between the
measured and estimated position. The block produces an estimated value that is closely proportional
to the measured position. The block uses stator voltages (V,, Vp) and currents (I, I) as inputs and
estimates the electromotive force (emf) of the motor model. It uses the emf to further estimate the
rotor position and rotor speed. The Flux Observer block uses identical inputs (V,, Vj, I, Ig) to
estimate the stator flux, generated torque, and the rotor position.

Models

We provide these models to implement sensorless FOC for PMSM:

+ mcb_pmsm_foc_sensorless f28069MLaunchPad
+ mcb_pmsm_foc_sensorless £28379d

You can use these models for both simulation and code generation. You can use the "open_system"
command to open a model. For example, use this command for a F28069M based controller:

open_system('mcb _pmsm_foc sensorless f28069MLaunchPad.slx');

Permanent Magnet Synchronous Motor Field Oriented Control
Postion Estimator

Sliding mode observer Note: This example requires a TI F28069m LaunchPad with a BOOSTXL-DRV8305

booster pack connected to a PMSM Motor
® Flux observer

() initialize

Hardware Init

[

9

o

i

M

2

£

o

il =

g 2
s
E

ALl Heartbeat LED

r

Simulation ESIETA Traaerl]
Speed_Ref FU Idy_ref_PU Duty Cycles —b
Enabls RTE
Desired Speed ldqRef_PU Duty_Cycles  Feedbacks_sim —»
EnClosedLoop Speed_Meas_FU Feedbacks_siBpeed_meas_PU
Speed_ref . -
Serial Receive Speed Control Curent Control Inverter and Mator - Plant Model
laOffset
Explore more:
1. Edit motor & inverter parameters
IbOffset 2. Simulate this model

3. Review results in Data Inspector
4. Build, Deploy & Start

Copyright 2020 The MathWorks, Inc 5. Control motor via host model .
6. Start the motor in open loop and transition to close loop.

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks Products

* To simulate model:

1  For the model: mch_pmsm_foc_sensorless f28069MLaunchPad

4-3



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

* Motor Control Blockset
* Fixed-Point Designer™
2 For the model: mcb_pmsm_foc_sensorless_£28379d

* Motor Control Blockset
* To generate code and deploy model:

1 For the model: mcb_pmsm_foc_sensorless f28069MLaunchPad

*  Motor Control Blockset
* Embedded Coder
* Embedded Coder Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer
2 For the model: mcb_pmsm_foc_sensorless 28379d

* Motor Control Blockset

* Embedded Coder

* Embedded Coder Support Package for Texas Instruments C2000 Processors
* Fixed-Point Designer (only needed for optimized code generation)

Prerequisites

1 Obtain the motor parameters. We provide default motor parameters with the Simulink model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor
that you want to use, by using the Motor Control Blockset parameter estimation tool. For
instructions , see “Estimate Motor Parameters by Using Motor Control Blockset Parameter
Estimation Tool” on page 6-2

The parameter estimation tool updates the motorParam variable (in the MATLAB(R) workspace)
with the estimated motor parameters.

2 Ifyou obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the
Simulink models. For instructions to update the script, see “Estimate Control Gains from Motor
Parameters” on page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not
update the motor parameters in the model initialization script. The script automatically extracts
motor parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1  Open a model included with this example.
2 To simulate the model, click Run in the Simulation tab.
3 To view and analyze the simulation results, click Data Inspector in the Simulation tab.

4-4



Implement Motor Speed Control Using Field-Oriented Control (FOC)

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the FOC algorithm on the target hardware.

We provide a host and a target model. The host model is a user interface to the controller hardware
board. You can run the host model on the host computer. The pre requisite to use the host model is to
deploy the target model to the controller hardware board. The host model uses serial communication
to command the target Simulink model and run the motor in a closed-loop control.

Required Hardware

This example supports these hardware configurations. Use the target model name (highlighted in
bold) to open the model for the corresponding hardware configuration, from the MATLAB command
prompt.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter:
mcb_pmsm_foc_sensorless f28069MLaunchPad

¢ LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter:
mcb_pmsm_foc_sensorless_f28379d

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5

Generate Code and Run Model on Target Hardware

Simulate the target model and observe the simulation results.
Complete the hardware connections.

The model automatically computes the Analog-to-Digital Converter (ADC) or current offset
values. To disable this functionality (enabled by default), update the value 0 to the variable
inverter.ADCOffsetCalibEnable in the model initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions to compute the ADC offset, see “Run 3-Phase AC Motors in
Open-loop Control and Calibrate ADC Offset” on page 4-52.

4  Open the target model for the hardware configuration that you want to use. If you want to
change the default hardware configuration settings for the model, see “Model Configuration
Parameters” on page 2-2.

5 Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, a program that operates
the CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not
mistakenly configured to use the board peripherals intended for CPU1.

Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

In the target model, click the host model hyperlink to open the associated host model. You can
also use the "open_system" command to open the host model. For example, use this command for
a F28069M based controller:

open_system('mcb _pmsm_ foc host model f28069m.slx');



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

HOST

Serial
Setup

Host Senal Setup

1200

Reference Speed

TX

-5000 -4300 -3000 -1300 O

10
11

12

4-6

1300 3000 4500 6000

PMSM FOC Host

On

Motor Start / Stop

Copyright 2020 The MathWorks, Inc.

Mote:
1. Select the serial port in
"Host Serial Setup’ (Blue Color)
2. Use "Motor Start £ Stop® switch to enable and
disable motor control.
3. Input speed request using "Reference Speed’
text boue or sliding bar.
4. Observe the actual speed of motor and
phasa A current in the scope.

Spead (RPM)

h

o

h

la {amps}

Rx

For details about the serial communication between the host and target models, see
“Communication between Host and Target” on page 7-2.

In the Host Serial Setup block mask of the host model, select a Port name.

Update the Reference Speed value in the host model.

Click Run in the Simulation tab to run the host model.

Change the Start / Stop Motor switch position to On, to start running the motor.

Note Do not run the motor (using this example) in the open-loop condition for a long time
duration. The motor may draw high currents and produce excessive heat.

Observe the debug signals from the RX subsystem, in the Time Scope of host model.

Note If you are using a F28379D based controller, you can also select the debug signals that you

want to monitor.




Sensorless Field-Oriented Control of PMSM Using Sliding Mode Observer and Flux Observer

Sensorless Field-Oriented Control of PMSM Using Sliding Mode
Observer and Flux Observer

This example implements the Field-Oriented Control (FOC) technique to control the speed of a three-
phase Permanent Magnet Synchronous Motor (PMSM). For details about implementing FOC, see
“Implement Motor Speed Control Using Field-Oriented Control (FOC)” on page 4-2.

This example uses the sensorless position estimation technique. You can select either the sliding
mode observer or flux observer to estimate the position feedback for the FOC algorithm used in the

example.

The Sliding Mode Observer (SMO) block generates a sliding motion on the error between the
measured and estimated position. The block produces an estimated value that is closely proportional

to the measured position. The block uses stator voltages (Va: V) and currents (o 15) as inputs and
estimates the electromotive force (emf) of the motor model. It uses the emf to further estimate the

rotor position and rotor speed. The Flux Observer block uses identical inputs (Ve Vs, Lo 1) 4o
estimate the stator flux, generated torque, and the rotor position.

Models

The example includes these models:

* mcb pmsm _foc_sensorless f28069MLaunchPad

+ mcb_pmsm_foc_sensorless £28379d

You can use these models for both simulation and code generation. You can use the "open_system"
command to open a model. For example, use this command for a F28069M based controller:

open_system('mcb pmsm foc sensorless f28069MLaunchPad.slx");

Postion Estimator
Sliding mode observer
® Flux observer

[x]

g

-8

g

¥

g

;

g

2l

3
=
2

Simulation

Enabla

EnClosedLoop

Speed_ref

laCffset

IbOffset

Permanent Magnet Synchronous Motor Field Oriented Control

Note: This example requires a Tl F28069m LaunchPad with a BOOSTXL-DRV8305
booster pack connected to a PMSM Motor

SCTRCINT]

Desired Speed

f

Serial Receive

RTE

r

() initialize

Hardware Init

Heartbeat LED

Spesd_Ref PU
ldqRef_PU j

Speed_Meas_PU

Trigger()

Idq_ref_PU Duty Cycles

Feedbacks_sitBpeed_meas_PU

et

Duty Cycles  Feedbacks_sim

-

Speed Contral

Current Caontrol

Copyright 2020 The MathWorks, Inc

Inverter and Motor - Plant Model

Explore mora:

1. Edit motor & inverter parameters
2. Simulate this model

3. Review results in Data Inspector
4. Build, Deploy & Start

5. Control motor via host model

6. Start the motor in open loop and transition to close loop.




4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-8

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products
To simulate model:

1. For the model: mcb_pmsm_foc_sensorless f28069MLaunchPad

Motor Control Blockset™
Fixed-Point Designer™

2. For the model: mcb_pmsm_foc_sensorless f28379d

Motor Control Blockset™
To generate code and deploy model:

1. For the model: mcb_pmsm _foc_sensorless f28069MLaunchPad

Motor Control Blockset™
Embedded Coder®
Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

Fixed-Point Designer™

2. For the model: mcb_pmsm_foc_sensorless £28379d

Motor Control Blockset™
Embedded Coder®
Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

Fixed-Point Designer™ (only needed for optimized code generation)
Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions , see
“Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool” on page 6-

2.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions to update the script, see “Estimate Control Gains from Motor Parameters” on
page 3-2

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.



Sensorless Field-Oriented Control of PMSM Using Sliding Mode Observer and Flux Observer

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. To simulate the model, click Run in the Simulation tab.

3. To view and analyze the simulation results, click Data Inspector in the Simulation tab.
Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the FOC algorithm on the target hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The pre requisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports these hardware configurations. Use the target model name (highlighted in
bold) to open the model for the corresponding hardware configuration, from the MATLAB® command
prompt.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter:
mcb_pmsm_foc_sensorless f28069MLaunchPad

¢ LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter:
mcbhb_pmsm_foc_sensorless £28379d

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2, Complete the hardware connections.

3. The model automatically computes the Analog-to-Digital Converter (ADC) or current offset values.
To disable this functionality (enabled by default), update the value 0 to the variable
inverter. ADCOffsetCalibEnable in the model initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions to compute the ADC offset, see “Run 3-Phase AC Motors in
Open-loop Control and Calibrate ADC Offset” on page 4-52.

4. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the model, see “Model Configuration Parameters” on
page 2-2.

5. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED using GPIO31 (c28379D cpu2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

4-9



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

6. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

7. In the target model, click the host model hyperlink to open the associated host model. You can
also use the "open system" command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb _pmsm foc host model f28069m.slx");

PMSM FOC Host

1. Salact the serial part in

"Host Serial Setup’ (Blue Color)
2. Use "Motor Start / Stop” switch to enable and
HOST dizable motor control.
Sarial 3. Input speed request using "Referance Spesd’
Setup text box or sliding bar.

4. Observe the actual speed of motor and

phase A cument in the scope.

Host Seral Setup

Off
Speed (RPM) > [:
1200
la {amps} d
Reference Speed e i
On
Motor Start / Stop

-5000 -4500 -32000 -1500 O 1300 3000 4500 6000

Copyright 2020 The MathWorks, Inc.

4-10



Sensorless Field-Oriented Control of PMSM Using Sliding Mode Observer and Flux Observer

4 = [=] 308
Eile Tools VYiew Simulation Help N

G- 4O ®| - - FF-

Speed

Speed (RPM)

Fhase Current

la (amp:

Frame based

4-11



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-12

For details about the serial communication between the host and target models, see “Communication
between Host and Target” on page 7-2

8. In the Host Serial Setup block mask of the host model, select a Port name.
9. Update the Reference Speed value in the host model.
10. Click Run in the Simulation tab to run the host model.

11. Change the Start / Stop Motor switch position to On, to start running the motor in the open-loop
condition (by default, the motor spins at 10% of base speed).

Note: Do not run the motor (using this example) in the open-loop condition for a long time duration.
The motor may draw high currents and produce excessive heat.

We designed the open-loop control to run the motor with a Reference Speed that is less than or equal
to 10% of base speed.

12. Increase the motor Reference Speed beyond 10% of base speed to switch from open-loop to
closed-loop control.

NOTE: To change the motor's direction of rotation, reduce the motor Reference Speed to a value less
than 10% of the base speed. This brings the motor back to open-loop condition. Change the direction
of rotation but keep the Reference Speed magnitude as constant. Afterwards, transition to the closed-
loop condition.

13. Observe the debug signals from the RX subsystem, in the Time Scope of host model.

Note: If you are using a F28379D based controller, you can also select the debug signals that you
want to monitor.



Field-Oriented Control of PMSM by Using Hall Sensor

Field-Oriented Control of PMSM by Using Hall Sensor

This example implements the Field-Oriented Control (FOC) technique to control the speed of a three-
phase Permanent Magnet Synchronous Motor (PMSM). The FOC algorithm requires rotor position
feedback, which is obtained by a Hall sensor. For details about implementing FOC, see “Implement
Motor Speed Control Using Field-Oriented Control (FOC)” on page 4-2.

This example uses the Hall sensor to measure the rotor position. A Hall effect sensor varies its output
voltage based on the strength of the applied magnetic field. A Hall sensor identifies the rotor position
by detecting the polarity of the rotor magnets. A PMSM consists of three Hall sensors located
electrically 120 degrees apart. A PMSM with this setup can provide six combinations valid of binary
states (for example, 001,010,011,100,101, and 110). The sensor provides the angular position of the
rotor in the multiples of 60 degrees, which the controller uses to compute the angular velocity. The
controller can then use the angular velocity to compute an accurate angular position of the rotor.

|
[ Hail 1

Hall 1

Hall 2

Hall 3

Models

The example includes these models:
* mcb_pmsm_foc_hall f28069m
* mcb pmsm _foc hall £28379d

You can use these models for both simulation and code generation. You can use the "open_system"
command to open the Simulink® model. For example, use this command for a F28069M based
controller:

open_system('mcb_pmsm foc hall f28069m.slx"');

4-13



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Field-Oriented Control for PMSM with Hall sensor

Note: This example requires a Tl F28069m with DRV8312
- connected to a PMSM Motor with Hall Sensor

Code Generation Hardware Init

[
i Heartbeat LED
Simulation
_ SCI_Rx_INT() et P'L[‘rlggerl_} i
GlobalHallState H - Duty Cycles —# lab_Sim —e-<lab_Sim]|
r Specd Rl PU =
rP—— RT H >
aliStateChangeFlag Desirad Speed IdgRef_FU FerilE mAe Duty_Cycles
—_— Hall Sensor A
GlobalSpeedCount ] Spaed_Meas_PU - e T peed_f 'o5_Sim -
_— 2CAPZ Interrupt()
Global SpeedValidity Serial Receive Speed Control Current Control Inverter and Motor - Plant Model
Hall Sensor B
GlobalDirection =
—_— =CAP3 Interrupt() plore more:
= —— - 1. Edit motor & inverter parameters
2. Use offset computatation model to
Hall Sensor C find out position offset
3. Update offset in |nit script to variable
Copyright 2020 The MathWorks, Inc ‘pmsm.PositionOffset’
4. Build, Deploy & Start
5. Control motor via host model

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products
To simulate model:

1. For the model: mcb_pmsm_foc_hall £28069m

Motor Control Blockset™
Fixed-Point Designer™

N

. For the model: mcb_pmsm_foc_hall £28379d

Motor Control Blockset™

To generate code and deploy model:

j—

. For the model: mcb_pmsm_foc_hall f28069m

Motor Control Blockset™
Embedded Coder®
Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

Fixed-Point Designer™

N

. For the model: mcb_pmsm_foc_hall £28379d

Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

4-14



Field-Oriented Control of PMSM by Using Hall Sensor

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions , see
“Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool” on page 6-

2.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions to update the script, see “Estimate Control Gains from Motor Parameters” on
page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. To simulate the model, click Run in the Simulation tab.

3. To view and analyze the simulation results, click Data Inspector in the Simulation tab.
Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the FOC algorithm on the target hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The pre requisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports these hardware configurations. Use the target model name (highlighted in
bold) to open the model for the corresponding hardware configuration, from the MATLAB® command
prompt.

* F28069M controller card + DRV8312-69M-KIT inverter: mcb_pmsm_foc_hall f28069m

For connections related to the preceding hardware configuration, see “F28069 control card
configuration” on page 8-2.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter: mcb_pmsm_foc_hall £28069m
* LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcb_pmsm_foc_hall £28379d

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5.

Generate Code and Run Model on Target Hardware

4-15



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-16

1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model automatically computes the Analog-to-Digital Converter (ADC) or current offset values.
To disable this functionality (enabled by default), update the value 0 to the variable
inverter. ADCOffsetCalibEnable in the model initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions to compute the ADC offset, see “Run 3-Phase AC Motors in
Open-loop Control and Calibrate ADC Offset” on page 4-52.

4. Compute the Hall sensor offset value and update it in the model initialization script associated with
the target model. For instructions, see “Hall Offset Calibration for PMSM Motor” on page 4-39

5. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the model, see “Model Configuration Parameters” on
page 2-2.

6. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

7. Click Build, Deploy & Start in the Hardware tab to deploy the model to the hardware.

8. In the target model, click the host model hyperlink to open the associated host model. You can
also use the "open_system" command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb _pmsm foc host model f28069m.slx");



Field-Oriented Control of PMSM by Using Hall Sensor

PMSM FOC Host

Host Senal Setup

Off
1200
Reference Speed o
On
Motor Start / Stop

5000 -4300 -3000 -1300 O 1300 3000 4300 6000

Copyright 2020 The MathWorks, Inc.

Note:
1. SBelect the serial part in
"Host Serial Setup’ (Blue Color)

2. Use "Motor Start / Stop” switch to enable and
dizable motor control.

3. Input speed request using "Reference Spesd’
text box or sliding bar.

4. Dbserve the actual speed of motor and
phase A cument in the scope.

Speed (RPM) > [:]

la {ampe} b

RX

4-17



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4 = [=] 308
Eile Tools VYiew Simulation Help N
Q- A0OP® - |- K- FH-

Speed

Speed (RPM)

Fhase Current

la (amp:

Frame based

4-18



Field-Oriented Control of PMSM by Using Hall Sensor

For details about the serial communication between the host and target models, see “Communication
between Host and Target” on page 7-2.

9. In the Host Serial Setup block mask of the host model, select a Port name.

10. Update the Reference Speed value in the host model.

11. Click Run in the Simulation tab to run the host model.

12. Change the Start / Stop Motor switch position to On, to start running the motor.

13. Observe the debug signals from the RX subsystem, in the Time Scope of host model.

Note: If you are using a F28379D based controller, you can also select the debug signals that you
want to monitor.

4-19



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Field Oriented Control of PMSM by Using Quadrature Encoder

4-20

This example implements the Field-Oriented Control (FOC) technique to control the speed of a three-
phase Permanent Magnet Synchronous Motor (PMSM). The FOC algorithm requires rotor position
feedback, which is obtained by a quadrature encoder sensor. For details about implementing FOC,
see “Implement Motor Speed Control Using Field-Oriented Control (FOC)” on page 4-2

This example uses the quadrature encoder sensor to measure the rotor position. The quadrature
encoder sensor consists of a disk with 2 tracks or channels that are coded ninety electrical degrees
out of phase. This creates two pulses (A and B) that have a phase difference of ninety degrees and an
index pulse (I). Therefore, the controller uses the phase relationship between A and B channels and
the transition of channel states to determine the direction of rotation of the motor.

Models

The example includes these models:

* mch_pmsm_foc_gep_f28069m

* mch pmsm_foc_gep_f28069LaunchPad
* mcbh_pmsm_foc_gep_f28379d

* mch_pmsm_foc_qgep f28379d_GaN

You can use these models for both simulation and code generation. You can use the "open system"
command to open the Simulink® model. For example, use this command for a F28069M based
controller:

open_system('mcb pmsm foc gep f28069m.slx');



Field Oriented Control of PMSM by Using Quadrature Encoder

HW_INT

:

ode generation

!

HW_INT

Simulation

Enable

EnClosedLocp

Field-Oriented Control for PMSM with QEP sensor

Note: This example requires a Tl F28069m with DRV8312
connected to a PMSM Motor with QEP Sensor

o/

ESETa]

Desired Speed

J'

| (") initialize

Hardware Init

Heartbeat LED

Spesd_Ref PU J—p
IdqRet_PU

Spesd Meas_PU

laDffsat

L

IbOffset

SpeedRefl

Senal Receive

F

Trigger()
Idq_ref_PU Duty Cycles

Feedbacks_sim Speed_meas PU

_’H
|—> Duty_Cydes Feedbacks_sim

ga Xl

Speed Control

Current Control

Inverter and Motor - Plant Model

Copyright 2020 The MathWorks, Inc.

Explore more:

1. Edit motor & inverter parameters

2. Use Offset Computation model to find
out position offset.

3. Update offset in |nit script to variable
‘pmsm.PositionOffset’

4. Build, Deploy & Start

5. Control moter via host mode!

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products

To simulate model:

1. For the models: mcb_pmsm_foc_gep_f28069m and mcb_pmsm_foc_gep_f28069LaunchPad

* Motor Control Blockset™
+ Fixed-Point Designer™

2. For the models: mcb_pmsm_foc_qep _f28379d and mcb_pmsm_foc_qgep _f28379d_GaN

* Motor Control Blockset™

To generate code and deploy model:

1. For the models: mcb_pmsm_foc_gep_f28069m and mcb_pmsm_foc_gep_f28069LaunchPad

Fixed-Point Designer™

Motor Control Blockset™
Embedded Coder®
Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

2, For the models: mcb_pmsm_foc_gep_f28379d and mcb_pmsm_foc_qgep_£28379d_GaN

* Motor Control Blockset™
 Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

+ Fixed-Point Designer™ (only needed for optimized code generation)

4-21



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-22

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions , see
“Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool” on page 6-

2.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions to update the script, see “Estimate Control Gains from Motor Parameters” on
page 3-2

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. Click Run in the Simulation tab to simulate the model.

3. Click Data Inspector in the Simulation tab to view and analyze the simulation results.
Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The pre requisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports these hardware configurations. Use the target model name (highlighted in
bold) to open the model for the corresponding hardware configuration, from the MATLAB® command
prompt.

* F28069M control card + DRV8312-69M-KIT inverter: mch_pmsm_foc_gep_f28069m

For connections related to the preceding hardware configuration, see “F28069 control card
configuration” on page 8-2.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter:
mcb_pmsm_foc_qgep_f28069LaunchPad



Field Oriented Control of PMSM by Using Quadrature Encoder

* LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcb_pmsm_foc_gep £28379d

* LAUNCHXL-F28379D controller + BOOSTXL-3PHGANINYV inverter:
mcb_pmsm_foc_qgep f28379d_GaN

NOTE: When using BOOSTXL-3PHGANINV inverter, ensure that proper insulation is available
between bottom layer of BOOSTXL-3PHGANINV and the LAUNCHXL board.

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverter. ADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions to compute the ADC offset, see “Run 3-Phase AC Motors in
Open-loop Control and Calibrate ADC Offset” on page 4-52.

4. Compute the quadrature encoder index offset value and update it in the model initialization scripts
associated with the target model. For instructions to compute the quadrature encoder offset, see
“Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-45.

5. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the model, see “Model Configuration Parameters” on
page 2-2.

6. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (¢28379D cpu?2_ blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

7. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can
also use the "open system" command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb _pmsm foc host model f28069m.slx");

4-23



4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

PMSM FOC Host

Host Senal Setup

Off
1200
Reference Speed o
On
Motor Start / Stop

5000 -4300 -3000 -1300 O 1300 3000 4300 6000

Copyright 2020 The MathWorks, Inc.

4-24

Note:
1. SBelect the serial part in
"Host Serial Setup’ (Blue Color)

2. Use "Motor Start / Stop” switch to enable and
dizable motor control.

3. Input speed request using "Reference Spesd’
text box or sliding bar.

4. Dbserve the actual speed of motor and
phase A cument in the scope.

Speed (RPM) > [:]

la {ampe} b

RX



Field Oriented Control of PMSM by Using Quadrature Encoder

4 = [=] 308

Eile Tools VYiew Simulation Help N
G- 4OP® - FH-

Speed

Speed (RPM)

Fhase Current

la (amp:

Frame based

4-25



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

For details about the serial communication between the host and target models, see “Communication
between Host and Target” on page 7-2.

9. In the Host Serial Setup block mask of the host model, select a Port name.

10. Update the Reference Speed value in the host model.

11. Click Run in the Simulation tab to run the host model.

12. Change the Start / Stop Motor switch position to On, to start running the motor.

13. Observe the debug signals from the RX subsystem, in the Time Scope of host model.

Note: If you are using a F28379D based controller, you can also select the debug signals that you
want to monitor.

4-26



Field Weakening Control (with MTPA) of PMSM

Field Weakening Control (with MTPA) of PMSM

This example implements the Field Oriented Control (FOC) technique to control the torque and speed
of a three-phase Permanent Magnet Synchronous Motor (PMSM). The FOC algorithm requires rotor
position feedback, which is obtained by a quadrature encoder sensor. For details about implementing
FOC, see “Implement Motor Speed Control Using Field-Oriented Control (FOC)” on page 4-2.

Field Weakening Control

When you use the FOC algorithm to run a motor with rated flux, the maximum speed is limited by the
stator voltages, rated current, and back emf. This speed is called the base speed. Beyond this speed,
the operation of the machine is complex because the back emf is more than the supply voltage.
However, if you set the d-axis stator current (Id) to a negative value, the rotor flux linkage reduces,
which allows the motor to run above the base speed. This operation is known as field weakening
control of the motor.

Field Weakening Control
A 1

Stator
voltage

Torque

Stator current /
/ Rotor flux

Rotor Speed —

Depending upon the connected load and rated current of the machine, the reference d-axis current
(Id) in the field weakening control also limits the reference g-axis current (Iq), and therefore, limits
the torque output. Therefore, the motor operates in the constant torque region until the base speed.
It operates in the constant power region with a limited torque above the base speed, as illustrated in
the preceding figure.

The computations for the reference current Id depend on the motor and inverter parameters.

Note:

4-27



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-28

» For some surface PMSMs, (depending upon the parameters) it may not be possible to achieve
higher speeds at the rated current. To achieve higher speeds, you need to overload the motor with
maximum currents that are higher than the rated current (if the thermal conditions of the
machine are within the permissible limits).

*  When you operate the motor above the base speed, we recommended that you monitor the
temperature of the motor. During motor operation, if the motor temperature rises beyond the
temperature recommended by the manufacturer, turn-off the motor for safety reasons.

Maximum Torque Per Ampere (MTPA)

[
For the interior PMSMs, the saliency in the magnetic circuit of rotor results in higher L. ratio (greater
than 1). This produces reluctance torque in the rotor (in addition to the existing electromagnetic
torque). For more information, see MTPA Control Reference.

Therefore, you can operate the machine at an optimum combination of /# and I_.,, and obtain a higher

IIII-I."L = 1Ill-";j T '!'If

torque for the same stator current,

This increases the efficiency of the machine, because the stator current losses are minimized. The

algorithm that you use to generate the reference f« and Iy currents for producing maximum torque in
the machine, is called Maximum Torque Per Ampere (MTPA).



Field Weakening Control (with MTPA) of PMSM

A
Ly < Ly i Th To>Tg

Current Limited
Circle

Voltage Limited

Ellipse Field Weakening Region

Wg > W,

For an Interior PMSM (IPMSM), the example computes the reference It and Ts currents using the
MTPA method until the base speed. For a Surface PMSM (SPMSM), the example achieves MTPA
operation by using a zero d-axis reference current, until the base speed.

To operate the motor above the base speed, the example computes the reference /« and Iy for MTPA
and field-weakening control, depending upon the motor type. For a Surface PMSM, Constant Voltage
Constant Power (CVCP) control method is used. For an Interior PMSM, Voltage and Current Limited
Maximum Torque (VCLMT) control method is used.

For information related to MTPA Control Reference block, see MTPA Control Reference.

Target Communication

4-29



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

For hardware implementation, this example uses a host and a target model. The host model, running
on the host computer, communicates with the target model deployed to the hardware connected to
the motor. The host model uses serial communication to command the target model and run the
motor in a closed-loop control.

Models

This examples uses multiple models for these hardware configurations:
Speed control of PMSM with field-weakening and MTPA:

* mcb_pmsm_fwc_gep_f28069LaunchPad

* mcb_pmsm_fwc_gep_28379d

Torque control of PMSM with MTPA:

* mcb_pmsm_mtpa_gep_f28069LaunchPad

* mcbh pmsm _mtpa_qgep f28379d

You can use these models for both simulation and code generation. You can use the "open_system"
command to open the Simulink® model. For example, use this command for a F28069M based
controller:

open_system('mcb pmsm fwc gep f28069LaunchPad.slx');

PMSM Field Weakening Control with MTPA

Note: This example requires a TI F28069m LaunchPad with a BOOSTXL-DRV8305
booster pack connected to a PMSM Motor with QEP Sensor

PP
HW_INT (1) initialize
Code genaration e [FR——
kn
HW_INT .'j_j
- - Heartbeat LED
Simulation r r
SCI_Fu_INT() Trigger()
Global Variables ldo_ref PU  Duty_Cycles —>
RTZ RT3
| Enable | EnClosedLoop Speed_fb 1dq_ref Duty Cycles  Feedbacks _,
| Enable_fwe | | laOffsst | Feedbacks_sim  Speed_fo _>
RT4 RT1
| Speed_ref | | IbOffset | Serial Recaive Speed Contral Current Control Inverter and PMSM
Debug_signals
Explore more:
1. Edit motor & inverter parameters
2. Simulate this model
Not 3. Review results in Data Inspector
-4 "
3. Calibrate QEP offset
1) To achieve higher speeds, increase the “Max current” value in 4. Update l_ " ith
"Speed Control | MTPA Cantrol Reference” black (2.9, set to 2xirated). - Update motor parameters wi
2) It is recommended to monitor motor's temperature for operation QEP offset
above base speed, while working with hardware. 3. Generate code from hardware tab
- with "Build, Deploy & Start"
Ci ht 2020 The MathWaorks, Inc. N
opyTa = Ma arks, ine 6. Control motor via host model

4-30



Field Weakening Control (with MTPA) of PMSM

4 = =] &3

Eile Tools VYiew Simulation Help N

@-a4® P =R I RN A

Ready Sample based

Required MathWorks® Products
To simulate model:

1. For the models: mcb_pmsm_fwc_qep _f28069LaunchPad and
mcb_ pmsm_mtpa_gep f28069LaunchPad

* Motor Control Blockset™
* Fixed-Point Designer™

2. For the models: mcb_pmsm_fwc_gep f28379d and mcb_pmsm_mtpa_qep_f28379d
* Motor Control Blockset™
To generate code and deploy model:

1. For the models: mcb_pmsm_fwc_qep f28069LaunchPad and
mcb_pmsm_mtpa_gep f28069LaunchPad

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
+ Fixed-Point Designer™

2. For the models: mcb_pmsm_fwc_qgep_f28379d and mcb_pmsm_mtpa_qep_f28379d

4-31



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-32

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
» Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions , see
“Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool” on page 6-

2.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor,
inverter, and position sensor calibration parameters in the model initialization script associated with
the Simulink® models. For instructions to update the script, see “Estimate Control Gains from Motor
Parameters” on page 3-2

If you use the parameter estimation tool, you can update the inverter and position sensor calibration
parameters, but do not update the motor parameters in the model initialization script. The script
automatically extracts motor parameters from the updated motorParam workspace variable.

Simulate (Speed Control and Torque Control) Models

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. Click Run in the Simulation tab to simulate the model.

3. Click Data Inspector in the Simulation tab to view and analyze the simulation results.
Analyze simulation results for Speed Control Model

The model uses the per-unit system to represent speed, currents, voltages, torque, and power. Type
PU System at the workspace to see the conversion of one per-unit value into SI units for these
quantities.

Observe the dynamics of the system for the speed and current controllers. In addition, notice the
negative Id currents for motor operation above the base speed.



Field Weakening Control (with MTPA) of PMSM

o
;

0.5 4

0.5 4

0.5

W Speed_ref m Speed_fb

=S
o~
./
0 0.2 04 0.6 0.8 10 12 14 18 18 20 22 24 26 28 30
mId_fo mld_ref
0 0.2 0.4 0.6 0.8 10 1.2 14 16 18 20 22 24 2.6 28 3.0
W Iq_ref mlig_fb
r "
N\ N,
0 0.2 0.4 06 0.8 1.0 1.2 1.4 1.6 1.8 20 22 2.4 28 28 3.0
Note:

For some surface PMSMs, (depending upon the parameters) it may not be possible to achieve higher
speeds at the rated current. To achieve higher speeds, you need to overload the motor with maximum
currents that are higher than the rated current (if the thermal conditions of the machine are within
the permissible limits).

When you operate the motor above the base speed, we recommended that you monitor the
temperature of motor. During motor operation, if the motor temperature rises beyond the
temperature recommended by the manufacturer, turn-off the motor for safety reasons.

Analyze simulation results for Torque Control Model
Run simulation with the Id and Iq reference currents generated by these three methods:

1. Generate reference currents by using the MTPA Control Reference Block.

4-33



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

2. Generate the MTPA reference currents manually by using the Vector Control Reference Block.
3. Generate the Control Reference without MTPA.

The first method uses mathematical computations to determine the reference currents Id and Iq,
after assuming linear inductances.

Use the second method to manually generate the MTPA look-up tables for motors with non-linear
inductances. You can illustrate this with the Id and Iq references generated by sweeping the torque
angle between +(11/2) to -(11/2).

Use the last method to obtain the reference currents without the MTPA algorithm.

You can compare the torque and power generated by these three methods in the data inspector.

B Te_MTPA_manual (Nm) B Te_MTPA (Nm) = Te_NO_MTPA (Nm)

0.34 |
0.34 |+
0.2 0.27

0.2

01 02 04 05 06 07 08 08 10 11 12 13 14 15 18 17 18 1e 20

mid_fo mid_ref mig_ref mig_fb

m Pe_MTPA_manual (W) ® Pe_MTPA (W) m Pe_NO_MTPA (W)

= 56.8 |4——
50 4
56.8 |9
454
04 .~
-50
01 02 04 05 08 07 08 08 10 11 12 12 14 15 18 17 18 1e 20

4-34



Field Weakening Control (with MTPA) of PMSM

In the preceding example, you can notice that the electrical torque generated using MTPA is 0.34PU
whereas electrical torque generated without MTPA is 0.27PU. You can also notice that with a varying
torque angle, the maximum generated torque matches the torque produced by MTPA. The negative d-
axis current indicates that the MTPA utilizes the reluctance torque for interior PMSM.

NOTE: If you are working with Surface PMSM, change the Type of motor parameter from Interior
PMSM to Surface PMSM, in the MTPA Control Reference block located at the location: "Torque
Contro\MTPA Reference\MTPA Control Reference."

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The pre requisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports these hardware configurations. Use the target model name (highlighted in
bold) to open the model for the corresponding hardware configuration, from the MATLAB® command
prompt.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter:
mcb_pmsm_fwc_gep f28069LaunchPad and mcb_pmsm_mtpa_gep_f28069LaunchPad

* LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcb_pmsm_fwc_qgep _f28379d
and mcb_pmsm_mtpa_gep 28379d

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5.

Run Models to implement speed and torque control with field weakening & MTPA
1. Simulate the model and analyze the simulation results by using the preceding section.
2. Complete the hardware connections.

3. The torque control model requires an Interior PMSM with QEP Sensor, driven by an external
dynamometer with speed control (that uses the speed control model).

4. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value zero to the variable inverter. ADCOffsetCalibEnable in the
model initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions to compute the ADC offset, see “Run 3-Phase AC Motors in
Open-loop Control and Calibrate ADC Offset” on page 4-52.

5. Compute the quadrature encoder index offset value and update it in the model initialization scripts

associated with the target model. For instructions to compute the quadrature encoder offset, see
“Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-45.

4-35



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

6. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the target model, see “Model Configuration
Parameters” on page 2-2.

7. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

8. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

9. Click the host model hyperlink in the target model to open the associated host model. You can
also use the "open system" command to open the host model. For example, use this command for
speed control implementation:

open_system('mcb pmsm fwc host model.slx');

PMSM Field Weakening Control Host

2T Hote:
Sarial 1. Update workspace with variables used in target model
Setup 2. Selact the serial port in 'Host Serial Setup’ (Blue Colar)
3. Use "Motor Start / Stop” switch to control motor.
4. Input speed request using "Reference Speed’ block.
5. Observe the debug signals in scope.
Debug signals
Off Off 9
. * Speed_ref & Speed_feedback
Id_ref & Id_feedback
Ig_ref & lg_feedback
Torque & Power
la&lb
On On
Start / Stop Start / Stop Motor

Field Weakening Control

4-36

Scope (Per-Lnit) > C]
2000 B Speed_ref (rpm) Debug1 {5 units) b I:l -
i SelectedSignals
Reference Speed (RPM) Debug? {51 wils) N
Data_Conditioning_Tx Diata_Conditioning_Rx

Copyright 2020 The MathWorks. Inc.



Field Weakening Control (with MTPA) of PMSM

4 = [=] 3
Eile Tools VYiew Simulation Help u

G- 4dOP®| - - FF-

E

.U UL U

Ready Frame hased

For details about the serial communication between the host and target models, see “Communication
between Host and Target” on page 7-2.

10. In the Host Serial Setup block mask of the host model, select a Port name.

11. In the Speed control model, update the Reference Speed (RPM) block value. In the Torque control
model, update the current request using Imag Reference block.

12. Click Run in the Simulation tab to run the host model.
13. Change the Start / Stop Motor switch position to On, to start and stop running the motor.

14. Enter different reference speeds (or currents) and observe the debug signals from the RX
subsystem, in the Time Scope of host model.

Note

If the position offset is incorrect, this example can lead to excessive currents in the motor. To avoid
this, ensure that the position offset is correctly computed and updated in the workspace variable:
pmsm.PositionOffset.

When you operate the motor above the base speed, we recommended that you monitor the
temperature of motor. During motor operation, if the motor temperature rises beyond the
temperature recommended by the manufacturer, turn-off the motor for safety reasons.

References
[1] B. Bose, Modern Power Electronics and AC Drives. Prentice Hall, 2001. ISBN-0-13-016743-6.

[2] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors."
Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.

4-37



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-38

[3] Morimoto, Shigeo, Masayuka Sanada, and Yoji Takeda. "Wide-speed operation of interior
permanent magnet synchronous motors with high-performance current regulator." IEEE Transactions
on Industry Applications, Vol. 30, Issue 4, July/August 1994, pp. 920-926.

[4] Li, Muyang. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-
Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.

[5] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current
regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue 3, May/
June 2000, pp. 817-825.

[6] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction
motors]." IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42-50.

[7] TI Application Note, "Sensorless-FOC With Flux-Weakening and MTPA for IPMSM Motor Drives."



Hall Offset Calibration for PMSM Motor

Hall Offset Calibration for PMSM Motor

This example calculates the offset between the rotor direct axis (d-axis) and position detected by Hall
sensor. The Field-Oriented Control (FOC) algorithm needs this position offset to run the PMSM
correctly. To compute the offset, the target model runs the motor in the open-loop condition. The

model uses a constant ¥ (voltage along the stator's d-axis) and a zero V (voltage along the stator's g-
axis) to run the motor (at a low constant speed) by using a position or ramp generator. When the
position or ramp value reaches zero, the corresponding rotor position is the offset value for the Hall
Sensors.

The control algorithm (available in the field-oriented control and parameter estimation examples)
uses this offset value to compute an accurate position of d-axis of the rotor. The controller needs this
offset to optimally run the Permanent Magnet Synchronous Motor (PMSM).

Models

The example includes these models:

* mcb_pmsm_hall offset_f28069m
* mcbhb pmsm_hall offset f28379d

You can use these models only for code generation. You can use the "open_system" command to open
the Simulink® model. For example, use this command for a F28069M based controller:

open_system('mcb pmsm hall offset f28069m.slx");

4-39



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Offset Computation with Hall sensor

User Inputs

Power Supply [V] : 24
C2Bx
IRON ———»
Intermupt
Hardware Interrupt
r y r
SCAFT Intarmupt]) SCI_Rx_INT() Trigger()
GlobalHall5tate

Hall Sensor A Searial Recaive Offset Calculation

HallStateChangeFlag
r

aCAPZ Interrupt() |
——————— initiali
Global3peedCount Ll it =n

Hardware |nit
EEE—— Hall Sensor B
GlobalSpeadyalidity
pr— r
GlobalDirection aCAPS Interrupt() Heartbeat LED
Enabl Explore more:
nable - .
Hall Sensar 1. Edit motor & inverter parameters

2. Build, Deploy & Start
3. Control motor via host model

Copyright 2020 The MathWorks, Inc.

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products
To generate code and deploy model:

1. For the model: mcb_pmsm_hall offset_f28069m

Motor Control Blockset™
Embedded Coder®
Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

4-40



Hall Offset Calibration for PMSM Motor

Fixed-Point Designer™
2, For the model: mcb_pmsm_hall offset £28379d

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

* Update these motor parameters in the model initialization script associated with the target
models.

* Number of pole pairs

* Current control sample time (Ts)

* CPU frequency of the processor

For instructions to update the script, see “Estimate Control Gains from Motor Parameters” on page 3-
2.

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the motor by using open-loop control.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board.

The host model uses serial communication to command the target model and run the motor in an
open-loop configuration. You can use the host model to control the motor rotations and validate
direction of rotation of the motor. The dashboard LED in the host model turns red to indicate that the
motor is running in reverse (anti-clockwise) direction. When the LED turns red, you must reverse the
motor phase connections to change the direction of rotation. The host model displays the calculated
offset value.

Required Hardware

This example supports these hardware configurations. Use the target model name (highlighted in
bold) to open the model for the corresponding hardware configuration, from the MATLAB® command
prompt.

* F28069M controller card + DRV8312-69M-KIT inverter: mcb_pmsm_hall offset_f28069m

For connections related to the preceding hardware configuration, see “F28069 control card
configuration” on page 8-2.

 LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter:
mcb_pmsm_hall offset_f28379d

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5.

Generate Code and Run Model on Target Hardware

4-41



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

1. Complete the hardware connections.

2. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the target model, see “Model Configuration
Parameters” on page 2-2.

3. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

4. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

5. Click the host model hyperlink in the target model to open the associated host model. You can
also use the "open system" command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb _pmsm host offsetComputation f28069m.slx"');

PMSM Position Sensor Offset Calibration

=

ote:
1. Select the serial port in

'Host Serial Setup’ (Blus Color)
2. Run simulation

HOST 3. Start Motor by turning on the
Serial 'Calibration Start/Stop' switch.
Setup 4. Direction LED should be 'Green".

3. If LED is 'Red', reverse two motor
h .
Host Serial Setup TX Rx pnases
direction
Off
Offset
J

On

Calibration Start / Stop

4-42

Motor Conirol Blocksst w1.0
Copyright 2020 The MathWorks, Inc.



Hall Offset Calibration for PMSM Motor

4 = [=] 3
Eile Tools VYiew Simulation Help u
8- 40P Do - FF-

Reacly Frame bhased

For details about the serial communication between the host and target models, see “Communication
between Host and Target” on page 7-2.

You can use the Time Scope in the host model to monitor the rotor position and offset values.
6. In the Host Serial Setup block mask of the host model, select a Port name.
7. Click Run in the Simulation tab to run the host model.

8. Change the Calibration Start / Stop switch position to On, to start running the motor.

4-43



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-44

9. The dashboard LED turns green when the motor runs. Notice the rotor position and offset value
variation in the Time Scope (the position signal indicates a ramp signal with an amplitude between 0
and 1).

10. If the dashboard LED turns red, stop the motor by changing the Start / Stop Motor switch
position to Off. Turn off the DC power supply (24V) and reverse the motor phase connections from
ABC to CBA.

11. Repeat steps 4 to 8 and check if the dashboard LED is green. When the motor stops after
approximately 20 seconds, the host model displays the Hall sensor offset in the Offset box.

Note: This example does not support simulation.

For examples that implement FOC using a Hall sensor, update the computed offset in the
pmsm.PositionOffset parameter of the model initialization script linked to the example. For
instructions to update the script, see “Estimate Control Gains from Motor Parameters” on page 3-2.



Quadrature Encoder Offset Calibration for PMSM Motor

Quadrature Encoder Offset Calibration for PMSM Motor

This example calculates the offset between the d-axis of the rotor and encoder index pulse position
detected by the quadrature encoder sensor. The control algorithm (available in the field-oriented
control and parameter estimation examples) uses this offset value to compute an accurate and
precise position of the d-axis of rotor. The controller needs this position to implement the Field-
Oriented Control (FOC) correctly in the rotor flux reference frame (d-q reference frame), and
therefore, run the Permanent Magnet Synchronous Motor (PMSM) correctly.

Models

The example includes these models:

* mcb_pmsm_gep_offset_f28069m

* mcb_pmsm_gep_offset_f28069mLaunchPad
« mcbh_pmsm_gep_offset £28379d

You can use these models only for code generation. You can use the "open system" command to open
the Simulink® model. For example, use this command for a F28069M based controller:

open_system('mcb pmsm gep offset f28069m.slx');

4-45



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Offset Computation for QEP

User Inputs
Power Supply [V] : 24
C28x
IRGM —F‘I
Interrupt
(1} initialize
r r
Hardware Init SCILRx_INTG Triggen()
Serial Receive Offset Calculation
Heartbeat LED

Explore more:

1. Edit motor & inverter parameters
2. Build, Deploy & Start

3. Control motor via host model

Global Wariables

Enable

Copyright 2020 The MathWorks, Inc.

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products
To generate code and deploy model:

1. For the models: mcb_pmsm_qgep_offset_f28069m and
mcbhb_pmsm_gep_offset_f28069mLaunchPad

* Motor Control Blockset™
* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™

2, For the model: mcb_pmsm_qgep_offset_f28379d

Motor Control Blockset™

4-46



Quadrature Encoder Offset Calibration for PMSM Motor

* Embedded Coder®
* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

* Update the motor parameters in the model initialization script associated with the target models.
For instructions to update the script, see “Estimate Control Gains from Motor Parameters” on
page 3-2

Update the following parameters in the model initialization script:

1. pmsm.QEPSlits

2. pmsm.QEPIndexOffset

3. Number of pole pairs

4, Current control sample time (Ts)

5. CPU frequency of processor

Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the motor by using open-loop control.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The pre requisite to use the host
model is to deploy the target model to the controller hardware board.

The host model uses serial communication to command the target model and run the motor in an
open-loop configuration. You can use the host model to control the motor rotations and validate the
direction of rotation of motor. The dashboard LED in the host model turns red to indicate that the
motor is running in reverse direction. When the LED turns red, you must reverse the motor phase
connections (from ABC to CBA) to change the direction of rotation. After the target model receives
the motor-start command from the host model, the motor runs in open loop control for some time and
then stops. After the motor stops running, the target model aligns the rotor to the d-axis and captures
the position offset. The host model displays this offset value.

Required Hardware

This example supports these hardware configurations. Use the target model name (highlighted in
bold) to open the model for the corresponding hardware configuration, from the MATLAB® command
prompt.

» F28069M controller card + DRV8312-69M-KIT inverter: mcb_pmsm_gep_offset_f28069m

For connections related to the preceding hardware configuration, see “F28069 control card
configuration” on page 8-2.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter:
mcbhb_pmsm_gep_offset f28069mLaunchPad

 LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter:
mcb_pmsm_qgep_offset_28379d

4-47



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-48

« LAUNCHXL-F28379D controller + BOOSTXL-3PHGANINYV inverter:
mcb_pmsm_qgep_offset_28379d

NOTE: When using BOOSTXL-3PHGANINV inverter, ensure that proper insulation is available
between bottom layer of BOOSTXL-3PHGANINV and the LAUNCHXL board.

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5.

Generate Code and Run Model on Target Hardware
1. Complete the hardware connections.

2. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the target model, see “Model Configuration
Parameters” on page 2-2.

3. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

4. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can
also use the "open_system" command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb_pmsm host offsetComputation f28069m.slx"');



Quadrature Encoder Offset Calibration for PMSM Motor

PMSM Position Sensor Offset Calibration

Host Senal Setup TX RX

direction
Off

On
Calibration Start / Stop

Motor Contral Blocksat w1.0
Copyright 2020 The MathWorks, Inc.

MNote:
1. Select the serial port in
'Host Serial Setup’ (Blue Color)
2. Run simulation
3. Start Motor by turning on the
'Calibration Start/Stop" switch.
4. Direction LED should be 'Green'.
5. f LED is 'Red', reverse two motor

phases.

Offset

4-49



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4 = [=] 3
Eile Tools VYiew Simulation Help u
8- 40P Do - FF-

Reacly Frame bhased

For details about the serial communication between the host and target models, see “Communication
between Host and Target” on page 7-2.

You can use the Time Scope in the host model to monitor the rotor position and offset values.
6. In the Host Serial Setup block mask of the host model, select a Port name.
7. Click Run in the Simulation tab to run the host model.

8. Change the Calibration Start / Stop switch position to On, to start running the motor.

4-50



Quadrature Encoder Offset Calibration for PMSM Motor

9. The dashboard LED turns green when the motor runs. Notice the rotor position and offset value
variations in the Time Scope (the position signal indicates a ramp signal with an amplitude between 0
and 1).

10. If the dashboard LED turns red, stop the motor by changing the Manual Switch position to Motor
Stop. Turn off the DC power supply (24V) and reverse the motor phase connections from ABC to CBA.

11. Repeat steps 7 and 8, and check if the dashboard LED is green.

12. After the motor runs for some time and stops, the host model displays the quadrature encoder
offset in the Offset block.

Note: This example does not support simulation.

For examples that implement FOC using a quadrature encoder sensor, you must update the computed
quadrature encoder offset value in the pmsm.PositionOffset parameter of the model initialization
script linked to the example. For instructions to update the script, see “Estimate Control Gains from
Motor Parameters” on page 3-2.

4-51



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Run 3-Phase AC Motors in Open-loop Control and Calibrate ADC
Offset

4-52

Open-loop control (also known as Scalar control or Volts/Hz control) is a motor control technique that
varies the stator voltage and frequency to control the rotor speed without using any feedback from
the motor. You can use this technique to check the integrity of the hardware connections. A constant
speed application of open-loop control uses a fixed frequency motor power supply. Whereas, an
adjustable speed application of open-loop control needs a variable frequency power supply to control
the rotor speed. To ensure a constant stator magnetic flux, we keep the supply voltage amplitude
proportional to its frequency.

Open-loop motor control does not have the ability to consider the external conditions that can affect
the motor speed. Therefore, the control system cannot automatically correct the deviation between
the desired and the actual motor speed.

This model runs the motor using an open-loop motor control algorithm. It helps you get started with
Motor Control Blockset™ and verify the hardware setup by running the motor. The target model
algorithm also reads the ADC values from the current sensors and sends it to the host model by using
serial communication.

Therefore, this model can be used to meet following objectives:

* Check connectivity with target.

* Check serial communication with target.

» Verify hardware and software environment.

* Check ADC Offsets for current sensors.

* Run a new motor with an inverter and target setup first time.

Models

The example includes these models:

* mcb_open_loop_control 28069M_DRV8312
* mcb_open_loop_control_f28069MLaunchPad
* mcb_open_loop_control £28379d

You can use these models for both simulation and code generation. You can use the "open_system"
command to open the Simulink® model. For example, use this command for a F28069M based
controller:

open_system('mcb _open loop control f28069M DRV8312.slx"');



Run 3-Phase AC Motors in Open-loop Control and Calibrate ADC Offset

Open Loop Control of 3-phase motors
Note: This example requires a Tl F28069M Control Card with DRV8312 EVM

HW_INT

Code generation

—
HW_INT —I_.EI

Simulation

Global Variables

Explore more:
1. Simulate thizs model

2. Edit hardware parameters
3. Build, Deploy & Start
4. Control motor via host model

r

r

SCI_Re_INTY)

hJ

Desired Speed

ADC Intermupt])

p] Speed_ref FU Vabc PU

Deesired Speed

hJ

Serial Receive

Communication

Copyright 2020 The MathWorks, Inc.

Crpen Loop Control

Heartbeat LED

4-53



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4 = [=] 3

Eile Tools VYiew Simulation Help u

R N O =R I RN A

Ready Sample based

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products
To simulate model:

1. For the models: mcb_open_loop_control f28069M_DRV8312 and
mcb_open_loop_control f28069MLaunchPad

¢ Motor Control Blockset™
* Fixed-Point Designer™

2. For the model: mcb_open_loop_control £28379d

4-54



Run 3-Phase AC Motors in Open-loop Control and Calibrate ADC Offset

* Motor Control Blockset™
To generate code and deploy model:

1. For the models: mcb_open_loop_control f28069M_DRV8312 and
mcb_open_loop_control_f28069MLaunchPad

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™

2. For the model: mcb_open_loop_control £28379d

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (only needed for optimized code generation)

Pre-requisites

1. Update the motor parameters in the model initialization script associated with the target models.
For instructions to update the script, see “Estimate Control Gains from Motor Parameters” on page 3-
2

2. For BOOSTXL-DRV8323, use these steps to update the model:
* Navigate to this path in the model: /Open Loop Control/Codegen/Hardware Initialization.

For LAUNCHXL-F28379D: Update DRV830x Enable block from GP1I0124 to GPIO67.

For LAUNCHXL-F28069M: Update DRV830x Enable block from GPIO50 to GPIO12.
3. For BOOSTXL-3PHGANINYV, use these steps to update the model:

* Navigate to this path in the model: /Open Loop Control/Codegen/Hardware Initialization.

Add a NOT logical operator block between Enable and DRV830x Enable.

NOTE: When using BOOSTXL-3PHGANINV inverter, ensure that proper insulation is available
between bottom layer of BOOSTXL-3PHGANINV and the LAUNCHXL board.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. Click Run in the Simulation tab to simulate the model.

3. Click Data Inspector in the Simulation tab to view and analyze the simulation results.
Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the motor by using open-loop control.

4-55



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-56

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The pre requisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports these hardware configurations. Use the target model name (highlighted in
bold) to open the model for the corresponding hardware configuration, from the MATLAB® command
prompt.

* F28069M controller card + DRV8312-69M-KIT inverter:
mcb_open_loop_control f28069M_DRV8312

For connections related to the preceding hardware configuration, see “F28069 control card
configuration” on page 8-2.

* LAUNCHXL-F28069M controller + (BOOSTXL-DRV8301 or BOOSTXL-DRV8305 or BOOSTXL-
DRV8323 or BOOSTXL-3PHGANINV) inverter: mcbh_open_loop_control £28069MLaunchPad

* LAUNCHXL-F28379D controller + (BOOSTXL-DRV8301 or BOOSTXL-DRV8305 or BOOSTXL-
DRV8323 or BOOSTXL-3PHGANINV) inverter: mcb_open_loop_control £28379d

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5.

NOTE:

* This example supports any type of three-phase AC motor (PMSM or induction) and any type of
inverter attached to the supported hardware.

* Some PMSMs do not run at higher speeds, especially when the shaft is loaded. To resolve this
issue, you should apply more voltages corresponding to a given frequency. You can use these steps
to increase the applied voltages in the model:

1. Navigate to this path in the model: /Open Loop Control/Control System/VabcCalc/.

2. Update the gain "Correction Factor sinePWM" as 20%.

3. For safety reasons, regularly monitor the motor shaft, motor current, and motor temperature.
Generate Code and Run Model to Implement Open-loop Control

1. Simulate the target model and observe the simulation results.

2. Complete the hardware connections.

3. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the target model, see “Model Configuration
Parameters” on page 2-2.

4. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

5. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.



Run 3-Phase AC Motors in Open-loop Control and Calibrate ADC Offset

NOTE: Ignore the warning message "Multitask data store option in the Diagnostics page of the
Configuration Parameter Dialog is none" displayed by the model advisor, by clicking the Always
Ignore button. This is part of the intended workflow.

6. Click the host model hyperlink in the target model to open the associated host model. You can
also use the "open system" command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb open loop control host model.slx');

Open Loop Control Host Model

Group Hote:
n P 1. Selact the serial port in
®) Tl F28063M "Host Serial Setup' (Blus Color)

TI F28379D 2. Use "Motor Start / Stop’ switch to emable and
disable mofor control.

3. Input speed request using "Reference Speed’
text box or sliding bar.

4. Observe the ADC counts for phase current

HOST measurent in scope
Serial
Setup
Off
la {ADC counts) . D
100
Ib {ADC counds) >
Reference Speed ™= =
On
|IIIIIII|IIIIIII|IIIIIII|IIIIIII|IIIIIII|
2000 -1200 -400 400 1200 2000 Motor Start / Stop

Copyright 2020 The MathWaorks, Inc.

4-57



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

i = =] &3
Eile Tools VYiew Simulation Help N

G- 4O ®| - - FF-

Time (ms)

Ready Frame based

4-58



Run 3-Phase AC Motors in Open-loop Control and Calibrate ADC Offset

For details about the serial communication between the host and target models, see “Communication
between Host and Target” on page 7-2.

7. In the Host Serial Setup block mask of the host model, select a Port name.
8. Click Run in the Simulation tab to run the host model.

9. Change the Start / Stop Motor switch position to On, to start running the motor.

10. After the motor runs, observe the ADC counts for the /= and f# currents in the Time Scope.

If the motor does not run, change the Start / Stop Motor switch position to Off, to stop the motor and
change the Reference Speed in the host model. Afterwards, change the Start / Stop Motor switch
position to On, to run the motor again.

Generate Code and Run Model to Calibrate ADC Offset

1. Simulate the target model and observe the simulation results.

2. Complete the hardware connections.

3. Disconnect the motor wires for three phases, from the hardware board terminals.

4. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the target model, see “Model Configuration
Parameters” on page 2-2.

5. Load a sample program to CPU2 of LAUNCHXL-F28379D (for example, program that operates the
CPU2 blue LED using GPIO31) to ensure that CPU2 is not mistakenly configured to use the board
peripherals intended for CPU1.

6. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

NOTE: Ignore the warning message "Multitask data store option in the Diagnostics page of the
Configuration Parameter Dialog is none" displayed by the model advisor, by clicking the Always
Ignore button. This is part of the intended workflow.

7. Click the host model hyperlink in the target model to open the associated host model.
8. In the Host Serial Setup block mask of the host model, select a Port name.

9. Click Run in the Simulation tab to run the host model.

10. Observe the ADC counts for the /u and It currents in the Time Scope. The average values of the
ADC counts are the ADC offset corrections for the currents /= and . You can use these steps to
obtain the average (median) values of ADC counts: * In the Scope window, navigate to Tools >
Measurements, and select the Signal Statistics option to display the Trace Selection and Signal
Statistics areas.

4-59



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4| Scope - O X
File = Tools  View Simulation  Help o
{"E-":.} < Zoom In - - [ﬂ < ﬁF @ <

foom X
foomY
Foom Qut

Pan

Axes Scaling

Triggers
Measurements Trace Selection

Cursor Measurements
Signal Statistics
Bilevel Measurements

Peak Finder

Ready Sample based

In the Trace Selection area select a signal ({a or It). The window display the characteristics of
the selected signal in the Signal Statistics area. You can see the median value of the selected
signal in the Median field.

4-60



Run 3-Phase AC Motors in Open-loop Control and Calibrate ADC Offset

&1 7| & EF
¥ ¥ Trace Selection

la

* ¥ Signal Statistics

For the Motor Control Blockset examples, update the computed ADC (or current) offset value in the
inverter.CtSensAOffset and inverter.CtSensBOffset variables in the model initialization script linked
to the example. For instructions to update the script, see “Estimate Control Gains from Motor
Parameters” on page 3-2.

4-61



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Control Parameter Gain Tuning (Manual) in Hardware and Plant
Validation

4-62

This example uses Field-Oriented Control technique to run the motor in the following modes of
operation:

* Stop - In this mode, the motor stops running because the inverter outputs zero volts.

* Open loop - In this mode, the controller uses open-loop control to run the motor. You can use the
Operating Mode Variables area of the host model to change the output voltage of the inverter
and the rotor speed. Use the Monitor area to select the speed and rotor position values to display
them on the scope for monitoring.

» Torque control mode - In this mode, the controller uses a torque control algorithm to run the
motor. You can use the Operating Mode Variables area of the host model to change the 1«
reference and {4 reference currents.

You can also lock the rotor by turning the slider switch to Pos lock position that sets the rotor position
to zero. Therefore, in this mode the controller receives the position feedback as zero because the
motor stops running. If you turn the switch to Unlock position, the motor runs and the controller
receives position feedback from the quadrature encoder (you can monitor this value by using the
Position meas signal in the Monitor area of host model). You can use the scope to monitor the two
debug signals (Monitor Signal #1 and Monitor Signal #2) that you select in the Monitor area.
Therefore, you can use the slider switch to tune the torque control gain parameters.

* Speed control mode - In this mode, the controller uses a speed control algorithm to run the motor.
You can use the Operating Mode Variables area of the host model to change the Speed
Reference value (in per-unit) of the rotor. You can use the scope to monitor the two debug signals
(Monitor Signal #1 and Monitor Signal #2) that you select in the Monitor area. For information
related to the per-unit system, see “Per-Unit System” on page 7-15.

You can use the Control loop gains area of the host model to change the control parameters of the
d-axis and q-axis current controllers and the speed controller.

This example implements the Field-Oriented Control (FOC) technique to control a three-phase
Permanent Magnet Synchronous Motor (PMSM). You need a real time feedback of the rotor position
to implement an FOC algorithm. This example uses a quadrature encoder sensor to measure the rotor
position. For details about implementing FOC, see “Implement Motor Speed Control Using Field-
Oriented Control (FOC)” on page 4-2.

You can use this example to run the motor in open-loop control, torque control, and speed control
modes. You can also use this example for tuning the hardware gains and validating the plant model.

Note: We recommend that you stop the motor first before transitioning from one operating mode to
the other.

You can select one of the following operating modes in the Control area of the host model:

* Stop
* Open loop run
» Torque control



Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation

* Speed control

Model

The example includes this model:

* mcbh_pmsm_operating_mode f28379d

You can use the model for both simulation and code generation. You can use the "open system"
command to open the Simulink® model:

open_system('mcb pmsm operating mode f28379d.slx');
Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation

Note: This example requires a Tl F28379D LaunchPad with a BOOSTXL-DRV8305 booster pack
connected to a PMSM Motor with QEP Sensor

Code generation L Hardware Init

LIE‘

Simulation = Heartbeat LED
> »Eus
_— == Bus
IOffsat
—_ SCLRINT]) =l TorqueCET gl
»E -
s - cParamin Speed meas T Pos_sim_PU _>
== Vabe_out_PU
RocBuf | | Rugut pParamouth—— Wabg out PU 2252 v ou PU
W

SCIRx ParseSCIRacv

e

SpeedMeas PU  IdgRef PU lab_sim_ADC < [lab_sim]
[nC 4 S —
Speed Contral . gt PU Motor and Inverter

Speed_meas_PU| < [Speed_meas]

[tab_sim] lah_sim_PU

Explore more:
1. Edil molor & inverter parameters
2. Simulate this model
#001»3 13 Calibrate QEP offset

-W.—* os_eim_FU 4. Update motor parameters with QEP offset
Motor Contral Blockest v1.0 5. Build, Deploy & Slart
lotor Conirol lockset v "
Capyright 2020 The MathWorks, Inc. e — 6. Control motor via host model

Required MathWorks® Products

To simulate model:

* Motor Control Blockset™

To generate code and deploy model:

1. Motor Control Blockset™

2. Embedded Coder®

3. Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
4. Fixed-Point Designer™

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions , see

4-63



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-64

“Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool” on page 6-
2.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions to update the script, see “Estimate Control Gains from Motor Parameters” on
page 3-2

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation only for the Speed Control operating mode. Follow these steps to
simulate the model.

1. Open the model included with this example.
2. Click Run in the Simulation tab to simulate the model.

3. Click Data Inspector in the Simulation tab to view and analyze the simulation results.

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The pre requisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the model, run (and control) the motor in a selected operating mode, and
monitor the debug signals of the model.

Required Hardware
This example supports these hardware configurations. Use the target model name (highlighted in
bold) to open the model for the corresponding hardware configuration, from the MATLAB® command

prompt.

¢ LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter:
mcb_pmsm_operating mode_£28379d

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.

2. Complete the hardware connections.



Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverter. ADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions to compute the ADC offset, see “Run 3-Phase AC Motors in
Open-loop Control and Calibrate ADC Offset” on page 4-52.

4. Compute the quadrature encoder index offset value and update it in the model initialization scripts
associated with the target model. For instructions to compute the quadrature encoder offset, see
“Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-45.

5. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the model, see “Model Configuration Parameters” on
page 2-2.

6. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

NOTE:

* Do not directly switch between the open-loop, torque control, and speed control operating modes.
Always stop the motor before changing the operating mode.

» Before you run the motor in speed control mode for the first time, run the motor in open-loop to
determine the quadratue encoder index. This helps to start the motor smoothly in the closed-loop
speed control mode.

Instructions for Open loop run operating mode:

1. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

2, Click the host model hyperlink in the target model to open the associated host model.

3. In the Host Serial Setup block mask of the host model, select a Port name.

4. Click Run in the Simulation tab to run the host model.

5. Select Stop in the Control area to stop the motor.

6. Select Open loop run to start the motor.

Instructions for Torque control operating mode:

1. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

2. Click the host model hyperlink in the target model to open the associated host model.

3. In the Host Serial Setup block mask of the host model, select a Port name.

4. Click Run in the Simulation tab to run the host model.

5. Select Stop in the Control area to stop the motor.

4-65



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

6. Enter the value 0 (per-unit) in the Id Reference and Iq Reference fields in the Operating Mode
Variables area.

7. Select Torque control in the Control area.
8. Move the slider switch to Unlock position in the Operating Mode Variables area.
9. Select Iq_ref for Monitor Signal #1 and Iq_meas for Monitor Signal #2 in the Monitor area.

10. Enter the value 0.1 (per-unit) in the in the Iq Reference field (in the Operating Mode Variables
area) to start running the motor.

11. Open the scope in the host model and monitor the Iq ref and Iq meas current signals.

Note: The motor can reach high speeds if you run it under no load condition in this operating mode.
In addition, the motor will not meet the Iq reference current under no load condition in this operating
mode.

Instructions for the Speed control operating mode:

1. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.
2. Click the host model hyperlink in the target model to open the associated host model.

3. In the Host Serial Setup block mask of the host model, select a Port name.

4. Click Run in the Simulation tab to run the host model.

5. Select Stop in the Control area to stop the motor.

6. Enter the value 0.5 (per-unit) in the Speed Reference field in the Operating Mode Variables
area.

7. Select Speed control in the Control area.

8. Select Speed_ref for Monitor Signal #1 and Speed_meas for Monitor Signal #2 in the
Monitor area.

9. Open the scope in the host model and monitor the Speed ref and Speed meas output signals.
Instructions for tuning the gain of torque controller:
1. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.
. Click the host model hyperlink in the target model to open the associated host model.
. In the Host Serial Setup block mask of the host model, select a Port name.

. Click Run in the Simulation tab to run the host model.

. Select Torque control in the Control area.

2

3

4

5. Select Stop in the Control area to stop the motor.

6

7. Turn the slider switch to Pos lock position in the Operating Mode Variables area.
8

. Select Id_ref for Monitor Signal #1 and Id_meas for Monitor Signal #2 in the Monitor area.

4-66



Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation

9. Enter the value 0.2 (per-unit) in the Id Reference field in the Operating Mode Variables area.
10. Open the scope and monitor the step response signal.

11. Tune the control gains Kp and Ki for the d-axis current controller.

Instructions for tuning the gain of speed controller:

1. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.
2. Click the host model hyperlink in the target model to open the associated host model.

3. In the Host Serial Setup block mask of the host model, select a Port name.

4. Click Run in the Simulation tab to run the host model.

5. Select Stop in the Control area to stop the motor.

6. Select Speed control in the Operating Mode Variables area.

7. Select Speed_ref for Monitor Signal #1 and Speed_meas for Monitor Signal #2 in the
Monitor area.

8. Enter the value 0.5 (per-unit) in the Speed Reference field in the Operating Mode Variables
area.

9. Open the scope and observe the reference and the measured speed values.

10. Enter the value 0.8 (per-unit) in the Speed Reference field.

11. Observe the speed step response in the scope.

12. Tune the control gains Kp and Ki for the speed controller.

Instructions for validating the plant model:

1. Click the host model hyperlink in the target model to open the associated host model.
2. In the Host Serial Setup block mask of the host model, select a Port name.

3. Click Run in the Simulation tab to run the host model.

4. Open the target model using the following command:
open_system('mchb pmsm operating mode f28379d.slx");

5. Change Manual Switch (in mcb pmsm_operating mode f28379d.slx/Speed Control/Speed control)
position to Simulate Step Speed Input.

6. Simulate the model mch pmsm operating mode f28379d.slx.

7. Open the scope in the model to observe the step response of the speed controller.

8. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.
9. Select Stop in the Control area of the host model to ensure that the motor is not running.

10. Select Speed control in the Operating Mode Variables area.

4-67



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-68

11. Select Speed_ref for Monitor Signal #1 and Speed_meas for Monitor Signal #2 in the
Monitor area.

12. Enter the value 0.2 (per-unit) in the Speed Reference field in the Operating Mode Variables
area.

13. Open the scope and observe the reference and the measured speed values.
14. Enter the value 0.5 (per-unit) in the Speed Reference field.
15. Observe the speed step response in the scope.

16. Compare the speed step responses obtained in steps 6 (with simulation) and 15 (with code
generation).

Note: You can also use the "open system" command to open the host model:

open_system('mcb host mode control.slx');



Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation

Host model for Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation

Set Comm port and baud rate in this
serial coniguration block

5074.6441990900097

5074.6441000000007

HOST

Z @)

——
Dashboard control

Motor Control Blockset vi.0
Copyright 2020 The MathWWorks, Inc.

9000000000000 00000

000000000000 000090

1. Change COMM port in serial blacks

2. Caution: Stop the mator when swithcing batween the modes

b
-
-

—
Change detect

L 1

Cmd Display

4-69



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4 = =] &3

Eile Tools VYiew Simulation Help N

@-a4® P =R RO RN R P

Ready Frame based

In the Control loop gains area, you must enter the gain values that can be represented by the
datatype defined in the model initialization script.

For details about the serial communication between the host and target models, see “Communication
between Host and Target” on page 7-2.

4-70



Monitoring Resolver Using Serial Communication

Monitoring Resolver Using Serial Communication

This example operates the resolver sensor to measure the rotor position. The resolver consists of two
orthogonally placed stator windings placed around the resolver rotor winding. After you mount the
resolver sensor over a PMSM, the resolver rotor winding rotates along with the shaft of the running
motor. The controller provides a fixed frequency alternating excitation signal to the resolver rotor
winding. When the resolver rotor rotates, the resolver stator windings produce output (secondary
sine and cosine) signals that are modulated with the sine and cosine of the shaft angle or position.
After receiving the secondary signals, the controller samples and normalizes them.

|
I Shaft/ rotor position
Iff_-

/
/
-0 "4
Secondary
cosine — /'f
signal x’f
Primary
excitation signal
L .
Secondary
sine signal

4-71



4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

1 I T "'. '(‘.I | 'u, f"', | \.I I.-’ -.I : \IIPriman{ Excilta::on smf::al | \'.I \‘. T I(\". T T \‘.
05 /Z III|I ||,{ II|| I/ II|I I|I|I I||I II/ II|I II|I Ilf III IIf I'.I ||I/ I|II / |II|I I/ III / | II/ |II / I|I /
or I'| |( II'| l'I I'u |'II I'l }I I'I| I'| / I'| [t | I
0.5 \ [

| T
[ S |'I I' I'l I'| | I'I \ | I'. I' I'I ' I'| |'I II' 'II I'I ’ I'|
| '. | | I'. '.I II, 'ul ' '.I III 'ul | I'. | I|' 'ul I ',I | I'u '.I f I'. III ' '.I | I'.
y II"\ill \ J|I}| II"J II"JIII| IIUI II"\ f'/| II'J II'\/ I|| II"J/ II\/'/ ! II'\/ II"\/J ! II'\;"IIII I"\/J | IIUI \ / | Il'u'lilll II"\/ | \ /I Il'j

0.; i | \III /‘HIII l/\ﬁllll Illlﬂllll I/\IIIII /\Il l/\ Secondanflsine signal \l /\I‘I‘ /F(\‘-,Illl /\".III /"-Illl /\'-IIII /\III |
DJ\_/\ \ / Ill'ul III'I II", "II II'. |'II I"l I|'H II", " III".I \\//\ "’““/\\/ Ill'u / II".I /I Il'ul / II'| / II", I,I'II II", ;’I II"\ /\/ 7
ok VA Y VS Y 1

P | '\/| \/ II'\.] | Y | | | v |I'U'II VY, !

0.016 0.018 0.02

Sampled and normalized secondary sine signal

7 T { T II|I| |II T I|I 1 I II [ I
|II | 1 |
02 a X '|II { I|I IIII I|I ’ I|I {1
e & \ f \ ' " '
o—ee \ \ " l
\ \
D2 | | \'\
0 1

e

0.002

0.004 0.006 0.008 0.01 0.012

0.014 0.016 0.018
Sampled and normalized secondary cosine signal

Models

The example includes this model:

mch_resolver f28069m

You can use this models only for code generation. You can use the "open system" command to open
the Simulink® model. For example, use this command for a F28069M based controller:
open_system('mcb resolver f28069m.slx');

4-72



Monitoring Resolver Using Serial Communication

C2Bx
1RGN —PI
Interrupt
r r
HW Driver Blocks functiani} functioni}
C2B02x/0 3050 D82
AlE1 ——]
ADC
C2B02x/0 3050 D82
aP W

DMA Channel 2 Interrupt (S0us) DA Channel 1 Interrupt (100us)

duty_cycle_table ADC_result_array

Duty cycle tabla ADC result array

Required MathWorks® Products
For the model: mcb_resolver f28069m

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
» Fixed-Point Designer™

Prerequisite

We provide default inverter parameters with the target model. If you want to change the default
values, you can update the inverter parameters in the model initialization script associated with the
Simulink® model. For instructions to update the script, see “Estimate Control Gains from Motor
Parameters” on page 3-2

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The pre requisite to use the host
model is to deploy the target model to the controller hardware board. The controller in the target
model uses the Resolver Decoder block to process the sampled and normalized secondary sine and

4-73



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-74

cosine signals to obtain the shaft (or motor) position. The host model uses serial communication to
command the target model and obtain the computed shaft angle from the controller. You can observe
the computed shaft position in the Time Scope block of the host model.

Required Hardware

This example supports this hardware configuration. Use the target model name (highlighted in bold)
to open the model for the corresponding hardware configuration, from the MATLAB® command
prompt.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter: mcb_resolver_f28069m

For connections related to the preceding hardware configuration, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5.

Generate Code and Run Model on Target Hardware

1. Complete the hardware connections and open the target model mcb_resolver 28069m.

2. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

3. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

4. Click the host model hyperlink in the target model to open the associated host model. You can

also use the "open system" command to open the host model. For example, use this command for the
F28069M based controller:

open_system('mcb resolver host read.slx');

Resolver Host

HOST Mote:
) 1. Selact the serial port in
g‘:ﬁ" "Host Serial Setup' (Blus Color)
P 2. Observe the resolver position in scope
HOST
P b oo O
Receive unBuf (50

g sedial received data




Monitoring Resolver Using Serial Communication

4 = [=] &3

Eile Tools VYiew Simulation Help N

@-a4® P =R I RN A

Ready Frame based

For details about the serial communication between the host and target models, see “Communication
between Host and Target” on page 7-2.

5. In the Serial Receive and Serial Configuration block masks of the host model, select a
Communication port value.

6. If you want to change the default baud rate (in the host and target models), use the Serial
Configuration block mask in the models to select a different Baud rate value.

7. Click Run in the Simulation tab to run the host model.
8. Open the Time Scope block in the host model.

9. Rotate the resolver shaft and observe the computed shaft position signal in the Time Scope block.

4-75



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Field Oriented Control of PMSM by Using Sl Units

HW_INT

HW_INT

Code generation
- — B 1 I Heartbeat LED

|4_|—|

This example implements the Field-Oriented Control (FOC) technique to control the speed of a three-
phase Permanent Magnet Synchronous Motor (PMSM). However, instead of the per-unit
representation of quantities(for details about the per-unit system, see “Per-Unit System” on page 7-
15), the FOC algorithm in this example uses the SI units of signals to perform the computations.
Following are the signals and their SI units:

* Rotor speed - Radians/ sec
* Rotor position - Radians

* Currents - Amperes

* Voltages - Volts

Field-oriented control (FOC) needs a real time feedback of the rotor position. This example uses the
quadrature encoder sensor to measure the rotor position. For details about implementing FOC, see
“Implement Motor Speed Control Using Field-Oriented Control (FOC)” on page 4-2.

Models
The example includes this model:
* mcb_ pmsm _foc_qep _f28379d_SIUnit

You can use this model for both simulation and code generation. You can use the "open system"
command to open the Simulink® model. For example, use this command for a F28379D based
controller:

open_system('mcb pmsm foc gep f28379d SIUnit.slx');

Permanent Magnet Synchronous Motor Field Oriented Control in Sl units

Note: This example requires a TI F28379D LaunchPad with a BOOSTXL-DRV8305 booster pack
connected to a PMSM Motor with QEP Sensor (1) initialize

3 Hardware Init

Enable

m
=)
Q
=]
@
1]
=1
g
=

Speed_ref

[=]
@
=
B
o
]
=
B
o

4-76

SCI_Rx_IMNT() Trigger(}
J—b Spesd_Ref 4,—» dq_ref Duty Cycles 4
Desired Speed RT ldqRef Duty Cycles Feedbacks_sim —#=< [Sim_fo]
Speed_Meas Feedbacks_sim Speed_meas
RT1
Serial Receive Speed Control Current Control Inverter and Motor - Plant Model

Explore more:

1. Edit motor & inverter parameters

2. Use Offset compuation model to find
out position offset.

3. Update offset in Init script to variable
'‘pmsm.PositionOffset’.

4. Build, Deploy & Start

5. Control motor via host model

Copyright 2020 The MathWaorks, Inc.

Required MathWorks® Products

To simulate model:



Field Oriented Control of PMSM by Using SI Units

* Motor Control Blockset™
To generate code and deploy model:

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
» Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions , see
“Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool” on page 6-
2.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions to update the script, see “Estimate Control Gains from Motor Parameters” on
page 3-2

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open the model included with this example.

2. Click Run in the Simulation tab to simulate the model.

3. Click Data Inspector in the Simulation tab to view and analyze the simulation results.
Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The pre requisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target model and run the motor in a closed-loop control.

Required Hardware

This example supports this hardware configuration. Use the target model name (highlighted in bold)
to open the model for the corresponding hardware configuration, from the MATLAB® command
prompt.

4-77



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-78

 LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter:
mcb_pmsm_foc_qep_f28379d_SIUnit

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverter. ADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions to compute the ADC offset, see “Run 3-Phase AC Motors in
Open-loop Control and Calibrate ADC Offset” on page 4-52.

4. Compute the quadrature encoder index offset value and update it in the model initialization scripts
associated with the target model. For instructions to compute the quadrature encoder offset, see
“Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-45.

5. Open the target model. If you want to change the default hardware configuration settings for the
model, see “Model Configuration Parameters” on page 2-2.

6. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

7. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can
also use the "open_system" command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb _pmsm SIUnit host model.slx"');



Field Oriented Control of PMSM by Using SI Units

FOC Host for SI Unit Example

Hote: ,

1. Salect the serial port in Debug signals ———
"Haost Serial Setup’ (Blue Color) -

2. Use "Motor Start / Stop” switch to enable and (») Speed Control
disable motor control. .

3. Input speed request using "Reference Speed’ L Id Control
text box or sliding bar. .

4. Observe the actual speed of motor and () 1g Control

Host Serial Setup Phase A current in the scope. la &b
i Jla & Position

; Debug 1 > D

Dabug 2
Reference Speed T RX

On

¥ | Motor Start / Stop

[TV L L VL L LR L e T
5000 4500 -3000 1500 O 1300 3000 4500 6000

Copyright 2020 The MathWorks, Inc.

4-79



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

(] = =] &3
Eile Tools VYiew Simulation Help N

- DdQP®| - FE-

Time (ms)

Ready Frame based

For details about the serial communication between the host and target models, see “Communication
between Host and Target” on page 7-2.

9. In the Host Serial Setup block mask of the host model, select a Port name.

10. Update the Reference Speed value in the host model.

11. Click Run in the Simulation tab to run the host model.

12. Change the Start / Stop Motor switch position to On, to start running the motor.

13. Observe the debug signals from the RX subsystem, in the Time Scope of host model.

4-80



Modeling Switching Dynamics in the Inverter by using Simscape Electrical

Modeling Switching Dynamics in the Inverter by using
Simscape Electrical

This example implements the Field-Oriented Control (FOC) technique to control the speed of a three-
phase Permanent Magnet Synchronous Motor (PMSM). However, in addition to the Average Value
Inverter block, the example provides you the option to use the following blocks as an alternative to
the Average Value Inverter block:

* Simscape™ Electrical™ 3 phase converter

* Simscape Electrical MMC (Modular Multilevel Converter)

The example also provides you the option to use the PMSM Simscape Electrical block as an
alternative to the Surface Mount PMSM Motor Control Blockset™ block.

Field-oriented control (FOC) needs a real time feedback of the rotor position. This example uses the
quadrature encoder sensor to measure the rotor position. For details about implementing FOC, see
“Implement Motor Speed Control Using Field-Oriented Control (FOC)” on page 4-2.

You can use this example to simulate the target model by using different inverters and monitor the
feedback current for each inverter. You can also generate the code and use the host along with the
target model.

Models
The example includes this model:
* mch_ee pmsm _foc

You can use this model for both simulation and code generation. You can use the "open_system"
command to open the Simulink® model. For example, use this command for a F28379D based
controller:

open_system('mcb ee pmsm foc.slx');

Permanent Magnet Synchronous Motor Field Oriented Control

Note: This example requires a TI F28379D LaunchPad with a BOOSTXL-DRV8305 booster pack
connected to a PMSM Motor with QEP Sensor

(1) initialize

Hardware Init

Heartbeat LED

Simulation

Global Variables

Enable

1aOffsat

IbOffsat

EnClosedLaop

SpeedRef

T

SCLR_INT)

Trigger()

» Speed Rel PU 4|—> Id_ref_PU Duty Cycles|
Desired Speed 1dqRei PU —|—> Duty_Cycles Fesdbacks sim —>
» 2 Maas_PU .—> Feedbacks_sim Speed_fbl
o Speed_Mess |

Speed Control

Gurrent Control

:

Copyright 2020 The MathWorks, Inc.

Inverter and Motor - Plant Model

Explore more:

1. Edit motor & inverter parameters

2. Use Offset computation model to find
out position offset.

3. Update offset in Init script to variable
'‘pmsm.PositionOffset'

4. Build, Deploy & Start

5. Control motor via host madel

4-81



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-82

Required MathWorks® Products
To simulate model:
* Motor Control Blockset™

To generate code and deploy model:

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions , see
“Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool” on page 6-

2.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions to update the script, see “Estimate Control Gains from Motor Parameters” on
page 3-2

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model
This example supports simulation. Follow these steps to simulate the model.
1. Open the target model mcb_ee_pmsm_foc.

2. You can select one of the following options in the InverterSelected radio group in the target model
(to select the inverter and motor blocks that you want to use):

* MCB average inverter - Select this option to use the Average Inverter and Surface Mount PMSM
Motor Control Blockset blocks.

* Sim Electrical 3 phase converter - Select this option to use the 3 phase converter and PMSM
Simscape Electrical blocks.

* Sim Electrical Modular Multilevel converter - Select this option to use the MMC and PMSM
Simscape Electrical blocks.

3. Select MCB average inverter in the InverterSelected radio group and click Run in the Simulation
tab to simulate the target model.



Modeling Switching Dynamics in the Inverter by using Simscape Electrical

4. Select Sim Electrical 3 phase converter in the InverterSelected radio group and click Run to
simulate the target model.

5. Select Sim Electrical Modular Multilevel converter in the InverterSelected radio group and click
Run to simulate the target model.

6. On the target model, click Data Inspector in the Simulation tab to view results from the three
simulation runs.

This image shows the simulation results for /= phase current:

® MCB average inverter

L5
¢
L.5
-10
1.002 1.084 1.095 1.008 1.087 1.008 1.080 1.100 1.101 1.102 1.103 1.104 1.105 1.108 1.107 1.108 1.100 1.110 1.1 1.112
| Sim Electrical 3 phase converter
; W%Mtﬁ*{w
m\t‘ﬂ‘ﬁ“ . ‘*'ih,
ot
5 o
g e M‘!
R = gty
S TR
e Wit
e Ml_-
' Ry
i, 2 M
o, M
Wi, ".eé'*%
™ pai
. i, ‘rf-w‘k
5 ™ it
gy g
g
[-+10 1082 1.004 1.005 +.008 1007 1.002 1000 1100 1104 1102 1103 1104 1105 1106 1407 1:108 1100 1110 T2
B Sim Electrical Modular Multilevel converter
LS
=
L.5
1.083 1.084 1.085 1.088 1.087 1.088 1088 1.100 1.101 1.102 1.103 1.104 1.105 1.108 1.107 1.108 1.100 1.110 1111 1112

These images show the comparison of rotor speed, Iy current, Jsb phase current, and rotor position
for the three inverter types:

4-83



4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

W Speed feedback

H g
g - T 2| 05
\
o5 1 04
/
/ \
MCB J’
average / = I 1 /’ = T 1 0.3
inverter |/ lf {
\ \
> | | 02
\
\
|l o5 A\ [o-4
0.2 0.4 06 038 1.0 1.2 14 LB\*" “+8—29- 0 0:2
W Speed feedback W Ig
— T N\ 05
/ |
Fos { 0.4
Sim ,!’l 1
Electrical J |
J
3 phase et t - J | | oa
converter / |
HO H
\
- . L o2
\
{
\
los \ 0.1
0.2 0.4 08 08 1.0 1.2 14 La\~ ~+:8~——29F 0 0.2 04
M Speed feedback m g
— " 05
/ \
Sim 0.5 s { Lo.4
Electrical 1
Modular f |
Multilevel = ‘\ fﬂ— ‘\ o2
converter /g H 4
9] \
) ¥ \ Loz
{
{
L-05 \ Lo
\
0.2 0.4 06 0.8 1.0 12 1.4 16 T—HE— 'ZOI 0 0.2 0.4 ¢.6

4-84



Modeling Switching Dynamics in the Inverter by using Simscape Electrical

m lab (phase current) m Rotor position

MCB
average
inverter 0

ol

p.se 0.80 092 084 088 088 1.00 1.02 104 1.08 080 0872 o o o8 1.00 1.02 1.0 108 1.0

m lab (phase current)

qu L

Sim i ]
Electrical
3 phase 8-
i
converter | | |

-5 )

pss 050 002 004 008 008 1.00 102 .04 108 108

23 080 002 0. 0. 08 1.00 102 1.0 108 108

W lab (phase current) W Rotor position

Sim
Electrical
Modular

Multilevel

converter [ o

ol

000 062 04 0. 08 1.00 102 1.0 106 108

These images show the comparison of PWM modulation waveforms for the three inverter types:

4-85



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

MCB
average
inverter

—

Sim
Electrical
3 phase
converter

g

Sim
Electrical
Meodular
Multilevel
converter

el

4-86

W PWM modulation waveform

.

[0.56

[ 0.45

0.262 0.264 0.266 0.262

\
0270 0272 0274

.\‘

e

0.2me——10.278 0.280 0.282 0.284 0.286 0.283

ot A
. ~ . ¥ L
0.200 02027 02040206

0.202

| PWM medulation waveform

0.55,

050

0.45

0.262 0.264 0.266 0.263 0.270 0.272

0274 0.276 0278 0.280 0.282 0.284 0.286 0.288 0.200 0.202 0.204 0.206

0.208

B PWM modulation waveform

[ 0.60 " .t
L TN L%
N W

‘nl.s ‘\Jf

I \
. I,

U

0.284 0.268 0.270

0.288 0.272

4 "
" “-‘ug.g#\-.t“ iy g

L A AN,

J }[A

0276 0278 0.280 0.282 0.284 0.286 0.288

wagtin e e
0ze0 BTV pe ML

0.208




Modeling Switching Dynamics in the Inverter by using Simscape Electrical

MCB
average
inverter

Sim
Electrical
3 phase

converter |

=

Sim
Electrical
Modular

Multilevel
converter

-

W Space Vector Generator:1

Space Vector Generator:2 ® Space Vector Generator:3

= §

'\/ [~ 'k\\ /‘\/”“ T~ [Psy /‘\“\/”
J \ / \
."’ \\\ “‘ f \:‘
Loz / v \ 7 \ [
:(‘ l\. ,-; \ r"
! \ \ / j' '\.\ /
L g N / 7 \\ [ ;';
/ ; \ ,
\ f
\ \ I/ ) \ /
0.2 \ / £
\ f \ / /
N\ ! \ J_‘
L A~ A
1188 1180 &:w«(@\wm LRB—TE00 r2ez 12041300 1208 1?1?-*«1’4\\1‘21* 12181778 12201222
W Space Vector Generator:1 Space Vector Generator:2 m Space Vector Generator:3
0.4 ‘
\/\_‘1};1 AN - /”"‘\H—u‘_,,: ffJ v, w‘*ﬂww_.\?"“"”‘_ﬁ*ﬁ_ NN ,JM WA \/,I\A.M
| X (5T W ! !
A \ ) Y .
o2 ¢ h f ‘FL 3 \ P
/ A\ % .| 1 Jf
' 7 L L
i \ 1\ / H\ 1 !j
\\ \ g L \
\L J { \ N 4
\ 1 )) { h \ 7
\ / F 4 \ v
LY f / !
‘\ ri J AN {
% / / | /
| -0 | |
2 .‘ ‘LL ,!' 1 \ \.‘\ ir
1 f A f{ X, 1%
'\w«wﬂ*”\%ﬂm et SRR r\"v, T o '\’l\/‘fl .,1/,4'-"”{ h Py ™ e N
1183 1180 1182 1184 1198 1198 1200 1208 1204 1208 1208 1210 1212 1214 1216 ¥41@ 1220 1222
W Space Vector Generator:1 Space Vector Generator:2 B Space Vector Generator:3
o8
I e DL L PR S ,,-m*"""'?ff"w,fv‘“"wﬂ‘w{.’t‘-w’”-i’"*‘y..,ﬂ'r"“’ ey, e
Fo.3 “‘:ll' % 7N i T
N Y L] / N L p
g R J I ", /
/ Y Y ’; 4
Fe r Y 4 J( 7 W
)fv 4 % f ¥ 3 i;
~ \ : N o
\ N o’ ks
I ) ¥ % hog J
7,;@ 3 b ;<£ o \‘* ‘:. ‘{* - /IJ
“*my;wﬁ"-*”‘“"ﬂ‘-ﬁmﬁ"-’ JOTPRN g ST R e PYT e ST TR i P
F-081188 1180 1182 1184 1196 1198 1200 1202 1204 1206 1208 1210 1212 1214 1216 1218 1220 1222

Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The pre requisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.
Required Hardware

This example supports this hardware configuration. Use the target model name (highlighted in bold)

to open the model for the corresponding hardware configuration, from the MATLAB® command
prompt.

4-87



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-88

¢ LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcb_ee_pmsm_foc

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations” on page 8-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverter. ADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions to compute the ADC offset, see “Run 3-Phase AC Motors in
Open-loop Control and Calibrate ADC Offset” on page 4-52.

4. Compute the quadrature encoder index offset value and update it in the model initialization scripts
associated with the target model. For instructions to compute the quadrature encoder offset, see
“Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-45.

5. Open the target model. If you want to change the default hardware configuration settings for the
model, see “Model Configuration Parameters” on page 2-2.

4. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

5. Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can
also use the "open_system" command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb _pmsm foc host model f28379d.slx");



Modeling Switching Dynamics in the Inverter by using Simscape Electrical

Reference Speed (RPM)

PMSM Control Host

Hote:
1. Salact the serial port in 'Host Serial Setup’ (Blue Colar)
2. Use "Motor Start / Stop” switch to control motor.

3. Input speed request using "Reference Speed’ block.
4. Observe the debug signals in scope.

Debug signals
Speed Control
Id Control
Ig Control
la&lb

) |a & Position

JC

1
1

Off
Scope (Per-Unit)
Diebug {31 units)
Diebug2 {31 units)
On —
Start / Stop Motor
Copynght 2020 The MathWarks, Inc.

SelectedSignals

4-89



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-90

F 1

Eile Tools  View

@- G0 P

Reacly

Simulation  Help N

M R

Frame based




Modeling Switching Dynamics in the Inverter by using Simscape Electrical

For details about the serial communication between the host and target models, see “Communication
between Host and Target” on page 7-2.

7. In the Host Serial Setup block mask of the host model, select a Port name.

8. Update the Reference Speed value in the host model.

9. Click Run in the Simulation tab to run the host model.

10. Change the Start / Stop Motor switch position to On, to start running the motor.

11. Observe the debug signals from the RX subsystem, in the Time Scope and Display blocks of the
host model.

Note: In the host model, you can also select the debug signals that you want to monitor.

4-91



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Tune PI controllers by Using Field Oriented Control (FOC)
Autotuner

This example computes the gain values of the PI controllers within the speed and current controllers
by using the Field Oriented Control Autotuner block. For details about implementing FOC, see
“Implement Motor Speed Control Using Field-Oriented Control (FOC)” on page 4-2.

The example supports only simulation. When you simulate the example, the model uses the crude
values of gains for the PI controllers to achieve the steady state of speed-control operation.

The model begins tuning only in the steady state. It introduces disturbances depending on the
controller goals (handwidth and phase margin), in the controller output. The model uses the system
response to the disturbances, to calculate the optimal controller gain.

Model
The example includes this model:
* mcb_pmsm_foc_autotuner

You can use this model only for simulation. You can use the "open system" command to open the
Simulink® model:

open_system('mcb_pmsm foc autotuner.slx');

Tuning Pl controllers for current and speed
using FOC Autotuner Explore mof:

1. Edit motor & inverter parameters

2. Simulate the model to compute the Pl gains

Scheduler

Desired Speed

Speed Ref

PI_D_Kp

i

r

PI_D_Ki

]
w
k=1
a
@
o
=
o)

0
w
=]
1]
o
o
=

4

©
™

Speed_Ref_PU —b.—b ldq_ref PU  Trigger() Duty Cyclas _.,
[sim_fb] H Feedbacks_sim
-_> Speed_Meas_PU FOC_AutoTune_Signals Duty_Cycles Feedbacks_sim [ [=im_fb]
1dqRef PU | @—> Foc_Autotuner_Output
Spd_Prtb) perturbation_spd fcmt_sirtst StartStop Speed_fb +
—®]loop startstops ‘ Current Control Inverter and Motor - Plant Model
Speed Control

L CurrentlLoop_AutaTune_In Crmit_Prtb LI
Spd_Prib

[ <(Epd_Prib)

» Spd_Act Cmt_SiriStp "~ C Pl Gains
Cmt_StrtStp]
Pl Gains

¥ Spd_Fl_In Spd_StriStp
FOC_AutoTuner PI_Params_Display_and_Logging

Copyright 2020 The MathWaorks, Inc.

Required MathWorks® Products for Simulation

* Motor Control Blockset™



Tune PI controllers by Using Field Oriented Control (FOC) Autotuner

+ Fixed-Point Designer™
Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions , see
“Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool” on page 6-

2.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions to update the script, see “Estimate Control Gains from Motor Parameters” on
page 3-2

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Note: In addition to the preceding products, you also need these products to use the parameter
estimation tool:

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
Simulate and Run Model to Compute PI Controller Gains

1. Open the target model.

2. Click Run in the Simulation tab to simulate the target model.

3. Observe the computed PI controller gain values in the Display blocks available in the
PI Params Display and Logging subsystem.

4. Update any target model with these gain values so that it brings the motor to a steady-speed state
quickly.

4-93



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Use Motor Control Blockset™ to Generate Code for a Custom
Target

4-94

This example shows how to use the Motor Control Blockset™ product with any processor. The
algorithm part of the model is separated from the driver layer by using a model reference that you
can deploy on any device.

Field Oriented Control (FOC) of PMSM

This example enables you to simulate and generate code from a system model that is configured for
TI C2000 F28069M processor. This system model refers to a model reference for the Field-Oriented
Control (FOC) implementation which you could run on any processor.

Required Products

+ MATLAB®

¢ Simulink®

* Matlab® Coder™

¢ Simulink® Coder™

* Motor Control Blockset™

* EmbeddedCoder®

* Fixed-Point Designer™ (only for serial communication)

Verify Algorithm Behavior by Using System Simulation
This section instructs you to verify the controller in a closed loop system simulation.

The system model "mcb pmsm foc system" test bench consists of the test inputs, embedded
processor, power electronics, and motor hardware. To see the signals, use Data Inspector in the
Simulation tab of Simulink toolstrip. You can use this model to test the controller and explore its
expected behavior.

» Use the following command to open the model.

open_system('mcb pmsm foc system.slx');



Use Motor Control Blockset™ to Generate Code for a Custom Target

Field-Oriented Control for PMSM with QEP sensor

Note: This example is configured for Tl F28069m LaunchPad with a BOOSTXL-DRV8305 booster pack
connected to a PMSM Motor with QEP Sensor.

¥

Processor

hJ

Embedded Processor Inverter and Motor - Plant Model

Copyright 2020 The MathWeorks, Inc.

NOTE: This model supports only floating-point computations.

inspector.

Explore more:
1. Edit motor & inverter parameters

2. Simulate this model

3. Calibrate QEP offset

4. Update motor parameters with QEP offset
5. Build, Deploy & Start

6. Control motor via host model

Run the simulation and see the logged speed reference and speed measured signals in the data

4-95



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4\ Simulation Data Inspector - untitled” - m}
Q 4 L3
Inspect Compare

Speed_Motor M Speed_Reference

Filter Signals 4000 1

- Run 11: mcb_pmsm_foc_system L.

o Speed_Motor

G O

| €=

2000 4

1500 4

1000 4

@ ¢ P~

-1000 4

-1500 4

-2000 4

-2500 4

-30090 4

Archive (10) mmd

PI'UDE!I'“GS C 0.5 1.0 15 2.0 25 a0 a5 40 45 50 85 8.0 65 70 75

Explore Model Architecture

This section explains about the model architecture that includes:

* How the data is specified.

* How the controller is partitioned from the test bench.

* How controller is scheduled.

This architecture facilitates system simulation and algorithmic code generation.

A data definition file creates the data needed for simulation and code generation. This data file is
automatically run within the InitFcn callback of the system test bench model.

edit('mcb_algorithm workflow data.m')

Another data file "mcb pmsm foc qep f28069LaunchPad data.m" defines the motor and inverter
parameters.

* Update the motor and inverter parameters for your hardware configuration in this file. For

example update motor parameters in the function mch SetPMSMMotorParameters that is called
from this file.

4-96



Use Motor Control Blockset™ to Generate Code for a Custom Target

Within the system test bench model, the embedded processor is modeled as a combination of the
peripherals and controller software. The block "mcb pmsm foc system/Embedded Processor/Serial
Receive" implements the reference inputs for Simulation.

open_system('mcb pmsm foc system/Embedded Processor');

Sensor Peripherals and Commands

(1) initialize

mech_pmsem_foo

Commands Dty

v

Dty

Duty Cyclas

SensorSigs Debug

()

Duty Cycles

FOC Control Algorithm

Inverter Driver Peripharals

We included the controller software in a separate model. This model contains the Speed Control and

Field-Oriented Control for PMSM

¥+ SensorSignals

| Commands

Hardware Init Heartbeat LED
Code generation
Simulation o
Commands s ———
om
Serial Receive
[m]
D, aFi sm o
— (mim |
a
Sensor Driver Blocks
Current Control subsystems of the FOC algorithm.
open_system('mcb_pmsm foc.slx');
@ SensorSigs
Sensor3igs
L1} -
Commands

|—> 1dq_ref_PU

Dty Cycles —@

DebugSignals

Speed_meas_PU

Current Contral

Copyright 2020 The MathWeorks, Inc.

4-97



4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-98

The primary control law is a field-oriented controller. The controller has a low rate outer loop that
controls the speed. It also has a higher rate inner loop that controls the current. Speed Control
subsystem implements the speed PI controller. The Current Control subsystem converts the ADC
signals (or the current feedback) to per-unit values and passes them to the core controller algorithm.
In addition, it also measures speed and position values from the quardature encoder pulses.

The controller algorithm calculates the voltages. The voltages are then converted to a driver signal.
The Speed Controller outer loop executes after each instance of the "Current Control loop time
period." You can view the variables that specify these sample times:

fprintf('Current loop sample time = %f seconds\n', Ts)

fprintf('Speed loop sample time = %f seconds\n', Ts speed)

Generate Controller C Code for Integration into Embedded Application

This section instructs you to generate and visually inspect the C code function for the controller.
The generated code consists of these three generated global functions:

+ void Controller Init(void): This function should be called to perform initialization routines.

* void Current Controller(void): This function implements the current controller and should be
called from a task running at 50e-6 seconds.

* void Speed Controller(void): This function implements the speed controller and should be called
from a task running at 500e-6 seconds.

You can specify the function prototype in the Configure C Step Function Interface dialog box. For
more details, see Override Default C Step Function Interface.

Inputs:
» Externallnputs mcb pmsm foc: This is a structure with speed reference and motor enable signal.

* SensorSigs: This is an array with Ia ADC counts, Ib ADC counts, quadrature encoder position
counts and quadrature encoder index latch.

Outputs:

* PWM Duty: This is an array with PWM Duty Cycles for the three phases and the PWM enable
signal.

* DebugSignals: This is an array of signals that you can log while executing the control algorithm.
Parameters:

* PI params: This is a structure which contains the PI gains Kp i, Ki i, Kp speed, and Ki speed.

+ IsOffset, IbOffset: These are the data store variables that contain the ADC calibration offsets.
Hardware Peripheral Integration

* We integrated the hardware peripherals with the control algoithm inside the
"mcbh pmsm foc system/Embedded Processor" subsystem.

» The ADC interrupt is used to schedule the generated code. The interrupt triggers at 50e-6
seconds.


https://www-integ2.mathworks.com/help/releases/R2020a/ecoder/ug/configure-c-step-function-arguments.html

Use Motor Control Blockset™ to Generate Code for a Custom Target

The subsystem "mcb pmsm foc system/Embedded Processor/Hardware Init" finds the ADC
calibration offsets and provides them to the control algorithm.

The subsystem "mcb pmsm foc system/Embedded Processor/Sensor Driver Blocks" implements
the ADC and QEP peripherals.

The subsystem "mcb pmsm foc system/Embedded Processor/Serial Receive" has the serial blocks
to receive user inputs from a host model when the generated code is executing on the target.

The subsystem "mcb pmsm foc system/Embedded Processor/Inverter Driver Peripherals" has the
PWM driver peripherals and Serial Transmit block to send data to the host computer. All these
peripherals are used form the TI C2000 Support Package.

If you are using a custom processor, you can implement the driver logic using a hand written code.
You can integrate the generated code for the control algorithm with your own driver code in your
preferred IDE.

Test Behavior of Generated Code

For details of required hardware connections, see Hardware Connections.

Find the QEP offset using this workflow.
Build and load the executable file to the target for the model mch pmsm foc system.

Open the host model "mcb pmsm foc host model f28069m" using the link available in the
"mcbh pmsm foc system" model.

Update the COM port name for the target in the Serial Configuration block.

Start the simulation for the host model and change the switch position to Motor Start on
"mcb pmsm foc host model f28069m/Manual Switch" to start running the motor.

Change the Speed demand (RPM) and monitor the effects on the time scope.

4-99






Run PMSM in Open-loop Control and
Calibrate ADC Offset




5 RunPMSMin Open-loop Control and Calibrate ADC Offset

Run PMSM in Open-loop Control and Calibrate ADC Offset

5-2

Open-loop control (also known as Scalar control or Volts/Hz control) is a motor control technique that
varies the stator voltage and frequency to control the rotor speed. This is a simple technique that
does not need any feedback from the motor. A constant speed application of open-loop control uses a
fixed frequency motor power supply. Whereas, an adjustable speed application of open-loop control
needs a variable frequency power supply to control the rotor speed. To ensure a constant stator
magnetic flux, we keep the supply voltage amplitude proportional to its frequency.

This model runs the motor using an open-loop motor control algorithm. It helps you get started with
Motor Control Blockset and verify the hardware setup by running the motor. The target model also
reads the ADC values from the current sensors and sends it to the host model by using serial
communication.

Therefore, this model can be used to meet following objectives:

* Check connectivity with target.

* Check serial communication with target.

» Verify hardware and software environment.
» Check ADC Offsets for current sensors.

* Run a new motor with an inverter and target setup first time.

Supported Hardware

The target model supports the following hardware configurations:
F28069M control card configuration

* F28069M control card

* DRV8312-69M-KIT inverter

* BLY171D (motor that supports quadrature encoder)
* DC power supply (24V)

Note Due to a power supply related hardware problem, DRV8312-69M-KIT inverter does not support
Teknic M-2310P motor.

LAUNCHXL-F28069M configuration

* LAUNCHXL-F28069M controller

* BOOSTXL-DRV8301 and BOOSTXL-DRV8323 (supported inverters)

* Teknic motor M-2310P and BLY171D (motors that support quadrature encoder)
* DC power supply (24V)

LAUNCHXL-F28379D configuration

* LAUNCHXL-F28379D controller
* BOOSTXL-DRV8305 and BOOSTXL-3PHGANINV (supported inverters)



Run PMSM in Open-loop Control and Calibrate ADC Offset

» Teknic motor M-2310P and BLY171D (motors that support quadrature encoder)
* DC power supply (24V)

Hardware Connections

For F28069M control card configuration

1 Connect the F28069M control card to J1 of DRV8312-69M-KIT inverter board.

2 Connect the motor wires for three phases, to MOA, MOB, and MOC on the inverter board.
3 Connect the DC power supply (24V) to PVDDIN on the inverter board.

4  Attach the quadrature encoder sensor to the motor shaft.

5 Connect the quadrature encoder pins (G, I, A, 5V, B) to J4 on the inverter board.

For LAUNCHXL-F28069M and LAUNCHXL-F28379D configurations

1  Attach the BOOSTXL inverter board to J1, J2, ]3, J4 on the LAUNCHXL controller board.

2 Connect the motor wires for three phases, to MOTA, MOTB, and MOTC on the BOOSTXL inverter
board.

3  Connect the DC power supply (24V) to PVDD and GND on the BOOSTXL inverter board.

4 Attach the quadrature encoder sensor to the motor shaft.

5 Connect the quadrature encoder pins (G, I, A, 5V, B) to QEP_A on the LAUNCHXL controller

board.

For more details regarding these connections, see “Hardware Connections” on page 8-2.

Required MathWorksProducts

* Motor Control Blockset

* Embedded Coder

* Embedded Coder Support Package for Texas Instruments C2000 Processors
* Fixed-Point Designer

Note For simulation, this model only needs Motor Control Blockset and Fixed-Point Designer.

Model

Use the following commands to open the target model:
* For a F28069M based controller:

open_system('mcb_open loop control f28069M DRV8312')



5 RunPMSMin Open-loop Control and Calibrate ADC Offset

Open Loop Control of 3-phase motors

Interrupt

C28x

IRQN

Note: This example requires a Tl F28069M Control Card with DRV8312 EVM

o

Global Variables

Explore more:

SCI_Rx_INT()

ADC Interrupt()

Serial Receive

1. Simulate this model
2. Edit hardware parameters

3. Build, Deploy & Start
4. Control motor via host model

* For a F28379 based controller:

Desired Speed P{ Speed_ref PU Vabc_PU
Communication Open Loop Control
C2806x
1 GPIOx
LED_RED GPIO DO

Motor Control Blockset v1.0
Copyright 2019 The MathWorks, Inc.

open_system('mcb_open loop control f28379d')



Run PMSM in Open-loop Control and Calibrate ADC Offset

Open Loop Control of 3-phase motors
Note: This example requires a Tl F28379D LaunchPad with a BOOSTXL-DRV8305 booster pack

C28x
IRQN
Interrupt ‘
A 4
SCI_Rx_INT() ADC Interrupt()
uint16 (2) single single (3
1 4% 1 Desired Speed 94D Speed_ref_PU Vabc_PU gle (3) » D
Serial Receive Open Loop Control
F2837x
uint16
Global Variables 1 > GPIOx
LED_RED GPIO DO
Explore more:
1. Simulate this model
2. Edit hardware parameters
3. Build, Deploy & Start Motor Control Blockset v1.0
4. Control motor via host model Copyright 2019 The MathWorks, Inc.

Use the host model hyperlink available at the bottom-left area of the target models to open the host
model.



5 RunPMSMin Open-loop Control and Calibrate ADC Offset

Serial Host Receive Monitor

COM14
5e6
8,none, 1

COM14 Data > Ul » ~I la (ADC_Counts) :D
o Ib (ADC_Counts)

Note:

1200 =l 1. Change comm port in 3 blocks (blue colored)
Speed (PU) | LD m . 2. The COM port has to match your board
1 For F28027 Launchpad, set Baud rate to 3.75e6

Speed demand (RPM) 2

For F28069 Launchpad, set Baudrate to 5.625e6
For F28379D Launchpad, set Baud rate to 5e6

Change_detect

1} — e
il

1

Motor Start

Motor Control Blockset v1.0
0 Copyright 2019 The MathWorks, Inc.

Motor Stop

The host model that runs on a host computer, receives the ADC current value from the target model
and displays the ADC counts in the scope. You can use the Manual Switch to either run or stop the
motor.

Pre-requisites for Running the Motor

1 Update the motor parameters in the model initialization script associated with the target model
and run the script. For instructions to update the script, see “Estimate Control Gains from Motor
Parameters” on page 3-2.

In the Serial Receive block mask of host model, select a Communication port value.
3 In the Serial Configuration block mask of host model, select a Baud rate value.

Load a sample program to CPU2 of LAUNCHXL-F28379D (for example, program that operates
the CPU2 blue LED using GPIO31) to ensure that CPU2 is not mistakenly configured to use the
board peripherals intended for CPU1.

Run Models to Implement Open-loop Control

1 Complete the hardware connections.

2 Configure the hardware settings (in Simulink) for the target model. For instructions, see “Model
Configuration Parameters” on page 2-2.

3 Click Build, Deploy & Start in the HARDWARE tab to deploy the target model to the
hardware.

4  Click the host model hyperlink in the target model to open the associated host model.



Run PMSM in Open-loop Control and Calibrate ADC Offset

Click Run in the SIMULATION tab to run the host model.
In the host model, change the Manual Switch position to Motor Start to start running the motor.

After the motor runs, open Time Scope in the host model to observe the ADC counts for the Ia
and Ib currents.

If the motor does not run, change the Manual Switch position to Motor Stop to stop the motor
and change the Speed demand (RPM) in the host model. Afterwards, change the Manual Switch
to Motor Start to run the motor again.

Run Models to Calibrate ADC Offset

1

D U AW

Complete the hardware connections and configure hardware settings (in Simulink) for the target
model. For instructions, see “Model Configuration Parameters” on page 2-2.

Click Build, Deploy & Start in the HARDWARE tab to deploy the target model to the
hardware.

Click the host model hyperlink in the target model to open the associated host model.
Disconnect the motor wires for three phases, from the hardware board terminals.
Click Run in the SIMULATION tab to run the host model.

Open Time Scope in the host model to observe the ADC counts for the I, and I;, currents. The
average values of the ADC counts are the ADC offset corrections for the currents I, and I;,. You
can use these steps to obtain the average (median) values of ADC counts:

a In the Scope window, navigate to Tools > Measurements, and select the Signal Statistics
option to display the Trace Selection and Signal Statistics areas.

5-7



5 RunPMSMin Open-loop Control and Calibrate ADC Offset

4. Scope - O x
File  Tools  View Simulation  Help N
"@' < Zoom In | - E] = i: Iﬁ =

foom X
foom Y
Zoom Qut

Pan

HAxes Scaling

Triggers

Measurements Trace Selection
Cursor Measurements
Signal Statistics
Bilevel Measurements

Peak Finder

Ready Sample based

b In the Trace Selection area select a signal (I, or I,). The window display the
characteristics of the selected signal in the Signal Statistics area. You can see the median
value of the selected signal in the Median field.



Run PMSM in Open-loop Control and Calibrate ADC Offset

| 7| A EF
¥ ¥ Trace Selection

la

* ¥ Signal Statistics

3.000e-01
-5.000e-01
1.600e+00
R

Median

Note This example supports simulation. Open the target model and click Run in the SIMULATION
tab to simulate the target model. On the target model, click Data Inspector in the SIMULATION
tab to view simulation results.

For the Motor Control Blockset examples, update the computed ADC (or current) offset value in the
model initialization script linked to the example. For instructions to update the script, see “Estimate
Control Gains from Motor Parameters” on page 3-2.

Also update the ADC offset value in the average model for the current sensor signal conditioning
circuits. For instructions to update the average model, see .

5-9






Estimate Motor Parameters by Using
Motor Control Blockset Parameter
Estimation Tool




6 Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool

Estimate Motor Parameters by Using Motor Control Blockset
Parameter Estimation Tool

6-2

Motor Control Blockset provides a parameter estimation tool that estimates the motor parameters
accurately. Use the estimated motor parameters to simulate the motor model and design the control
system. Therefore, the simulation response with the estimated parameters for the motor model is
close to the behavior of the motor under test.

The parameter estimation tool determines these motor parameters for a Permanent Magnet
Synchronous Motor:

* Phase resistance (R,)

+ dand q axis inductances (L4 and L)

* Back-EMF constant (K,)

* Motor inertia (J)

» Friction constant (F)

The parameter estimation tool accepts the minimum required inputs, runs tests on the target
hardware, and displays the estimated parameters.

Pre-requisites

The parameter estimation tool needs the motor position detected by the Hall sensors. This requires
Hall sensor calibration for the motor under test.

e Ensure that the PMSM is in no-load condition.
* Ensure that the PMSM has Hall sensors.

* Calibrate the Hall sensor offset. For instructions, see “Hall Offset Calibration for PMSM Motor” on
page 4-39.

Supported Hardware
This example supports only the following hardware configurations:

F28069M control card configuration

* F28069M control card

* DRV8312-69M-KIT inverter
* A PMSM with Hall sensor

* DC power supply

Note The DRV8312-69M-KIT board has a known issue in the board's power supply section. Due to
this limitation, the board does not support all Hall sensor types. For example, it does not support the
Hall sensor of Teknic M-2310P motor.

LAUNCHXL-F28379D configuration



Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool

* LAUNCHXL-F28379D controller
* BOOSTXL-DRV8305 inverter

* A PMSM with Hall sensor

* DC power supply

Required MathWorksProducts

You need these products to run the parameter estimation:

* Motor Control Blockset
* Fixed-Point Toolbox™

You need these optional products only to build the target models:

* Embedded Coder
* Embedded Coder Support Package for Texas Instruments C2000 Processors

Prepare Hardware

For F28069M control card configuration:

1 Connect the F28069M control card to J1 of DRV8312-69M-KIT inverter board.

2 Connect the motor three phases to MOA, MOB, and MOC on the inverter board.
3 Connect the DC power supply to PVDDIN on the inverter board.

4 Connect the Hall sensor encoder output to J10 on the inverter board.

For LAUNCHXL-F28379D configuration:

1  Attach the inverter board to the controller board such that J1, J2 of BOOSTXL aligns with J1, J2 of
LAUNCHXL.

Connect the motor three phases to MOTA, MOTB, and MOTC on the BOOSTXL inverter board.
Connect the DC power supply to PVDD and GND on the BOOSTXL inverter board.

4 Connect the Hall sensor output to QEP B (configured as eCAP) on LAUNCHXL.

w N

For more details regarding these connections, see “Hardware Connections” on page 8-2.
For more details regarding the model settings, see “Model Configuration Parameters” on page 2-2.
For LAUNCHXL-F28379D, load a sample program to CPU2, for example, program that operates the

CPU2 blue LED using GPIO31 (c28379D cpu2 blink.slx) to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

Parameter Estimation Tool
The parameter estimation tool includes a target model and a host model. The models communicate

with each other by using a serial communication interface. For more details, see “Communication
between Host and Target” on page 7-2.

6-3



6 Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool

Enter the system details about the motor under test in the host model. The target model uses an
algorithm to perform tests on the motor and estimate the motor parameters. The host model starts
these tests and displays the estimated parameters.

Prepare workspace

Use this MATLAB command to open the parameter estimation host model:

open_system('mcb param est host read.slx');

Board Selection Test Status Fault Status

DRV8305 and F28379D Launchpad -

Communication Port Over Current
Run Stop
Serial o Under Voltage
Setp Estimated Motor Parameters

Serial communication
The COM port has to match your board Rs - ohm
For F28069 Launchpad, set Baudrate to 5.625¢6

For F28379D Launchpad, set Baud rate to 566

Ld - H

Required Inputs
Nominal Voltage: 24 v
Nominal Current: 3.5 A (rms value) Bemf - Vee/Krpm
Nominal Speed: 4000 rpm Motor Inertia - kg.m"2

Signal from Target
Pole pairs: 4 Friction constant - N.m.s
Input DC Voltage: 24 v
Save Parameters Open Model

Hall Offset: 0.214 :er }Jlnit

Signal Conditioning and Scaling

Note: Press Ctrl+D to update the workspace

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
i Lq - H
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

} Hall Offset: For Hall offset calculation open required model
| for the hardware J—
| meb_pmsm_hall_offset f28069m

mcb_pmsm_hall_offset_f28379d

Target Models: Click Build load and Run in required
model for loading the target

mcb_param_est_f28069_DRV8312 SelectedSignal
mcb_param_est_f28379D_DRV8305 Algorithm

Copyright 2020 The MathWorks, Inc.

Enter these details in the host model to prepare the workspace:

* Board Selection - Select the target hardware and inverter combination.

+ Communication Port - Specify the serial port that you want to configure. Select an available port
from the list. For more details, see “Find Communication Port” on page 7-4.

* Required Inputs - Enter these motor specification data. You can obtain these values either from
the motor datasheet or on the motor nameplate.
* Nominal Voltage - The rated voltage of the motor (Volts).
* Nominal Current - The rated current of the motor (Ampere).
* Nominal Speed - The rated speed of the motor (rpm).
* Pole Pairs - The number of pole pairs of the motor.
* Input DC Veltage - The DC supply voltage for the inverter (Volts).

* Hall Offset - The Hall sensor offset value (per-unit position) (see “Hall Offset Calibration for
PMSM Motor” on page 4-39 and “Per-Unit System” on page 7-15).

6-4



Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool

In the Debug tab of the host model, click Update Model (Ctrl + D) to update the workspace with
the preceding inputs.

Note When updating Required Inputs, consider the following limitations:

* The rated speed of the motor must be less than 25000rpm.

* The tests protect the hardware from over-current faults. However, to ensure that these faults do
not occur, keep the motor's rated current (entered in Nominal Current field) less than the
maximum current supported by the inverter.

* Ifyou have an SMPS based DC power supply unit, set a safe current limit on the power supply for
safety reasons.

Deploy Target Models

Before starting the tests by using the parameter estimation tool, you should download the binary files
(.hex/ .out) generated by the target model into the target hardware. There are two workflows to
download the binary files;

Workflow 1: Build and Deploy Target Model:

Use this workflow to generate and deploy the code for the target model. Ensure that you update the
workspace with the required input details from the host model.

Click one of these hyperlinks in the parameter estimation host model to open the target model (for
the hardware that you are using):

* For F28069M based controller:

mcbh _param_est 28069 DRV8312
» For F28379D based controller:

mcb_param_est_f28379D_DRV8305
Click Build, Deploy & Start in the HARDWARE tab to deploy the target model to the hardware.

Note Ignore the warning message "Multitask data store option in the Diagnostics page of the
Configuration Parameter Dialog is none" displayed by the model advisor, by clicking the Always
Ignore button. This is part of the intended workflow.

- Setting not recommended by Model Advisor. — >

The "Mulfitask data store’ option in the Diagnostics page of the
" Configuration Parameters Dialog is none’. Data stome read block(s) and
"4 data store write block(s ) exist that execute in different tasks. This can
Ay cause comupted data in a real-ime system. Model Advisor recommends
“error’ for this diagnostic when generating code for a real-time system.
Consider changing the diagnostic to armor’.

Change lgnore Always ignore




6 Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool

6-6

Workflow 2: Manually Download Target Model:

Use this workflow to deploy the binary files (.hex/ .out) of the target model manually by using a third
party tool (the workflow does not need code-generation).

* Locate the binary files (.hex/ .out) at these locations:

* <matlabroot>\toolbox\mch\mcbexamples\mcb param est f28069 DRV8312.out
* <matlabroot>\toolbox\mcb\mcbexamples\mch param est f28379D DRV8305.out
* Open a third-party tool to deploy the binary files (.hex/ .out).
* Download and run the binary files (.hex/ .out) on the target hardware.

Estimate Motor Parameters

Use the following steps to run the Motor Control Blockset parameter estimation tool:

1  Ensure that you deploy the binary files (.hex / .out) generated from the target model, to the
target hardware and update the required details in the host model.
In the host model, click Run in the Simulation tab to run the parameter estimation tests.

3 The parameter estimation process takes less than a minute to perform the tests. You can ignore
the beep sound produced during the tests.

4 The host model displays the estimated motor parameters after successfully completing the tests.
The tool uses the following algorithm to estimate parameters:

* Motor resistance (R) - The tool uses Ohm's law to estimate this value.
* Motor inductance (L4 and L) - The tool uses frequency injection method to estimate these values.

* Back EMF (K,) - The tool measures the currents and voltages and uses the electric motor equation
to estimate this value.

* Permanent magnet flux (}) - The tool uses the estimated back EMF constant to estimate this value.

» Friction constant (B) - The tool estimates this value by using the torque equation for a motor
running at a constant speed.

* [Inertia (J) - The tool estimates this value by using retardation test.

» Rated Torque - The tool estimates this value by using the estimated value of permanent magnetic
flux of the motor.

During an emergency, you can manually turn the Run-Stop slider switch to Stop position to stop the
parameter estimation tests. In addition, the model interrupts the parameter estimation tests to
protect the hardware from the following faults:

1 Over-current fault

2 Under-voltage fault

3 Serial communication fault

Save Estimated Parameters

You can export the estimated motor parameters and further use them for the simulation and control
system design.



Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool

To export, click Save Parameters to save the estimated parameters into a MAT (.mat) file.

To view the saved parameters, load the MAT (.mat) file in the MATLAB workspace. MATLAB saves the
parameters in a structure named 'motorParam' in the workspace.

€| 11 struct with 15 fields

Field = Yalue
Sl de | 24
HH p 4
EEI nomCurrent 10,0409
I-:E] ratedSpeed E000

+H PositionOffset 0.2085
HH Rs 0.6949
HH Ld 1.6791-04
H Lq 1.5951e-04
HH Ke 4.6676
HH J 1.2755e-05
His 5.0038e-05
HH FluxPm 0.0064
HH T _rated 0.2876
H 1a_avg_cal 2.2911e+03
H Ib_avg_cal 2.2892e+03
£ >

Click Open Model to create a new Simulink model with a PMSM motor block. The motor block uses
the motorParam structure variables from the MATLAB workspace.






Concepts

* “Communication between Host and Target” on page 7-2

* “Open-loop and Closed-loop Control” on page 7-8

* “Current Sensor ADC Offset and Position Sensor Calibration” on page 7-12
* “Per-Unit System” on page 7-15



7 Concepts

Communication between Host and Target

Motor Control Blockset uses a host model and target model communication interface to control the
motor and observe the feedback.

lVDC

Serial —mmmmmm.  Dutycycles
- - > - - >
communication - - >
e < : : >
TTIIT
Host system Target device
Host Model

The host model is a user interface for the controller hardware board. You can run the host model on
the host computer. The prerequisite to use the host model is to deploy the target model to the
controller hardware board.

The host model commands, controls, and exchanges data with the target hardware. You can perform
these operations using the host model available in the Motor Control Blockset:

* Find the serial communication port (COM port) in the host system. For more details, see "Find
Communication Port" section in this page.

* Configure the serial port and baud rate by using the Serial Setup block.

» Start or stop the motor.

* Specify the motor speed.

* View the debug or output signals that the host receives from the target, by using the Time Scope
and Display blocks.

Target Model

The target model runs on the controller hardware board. Deploy the target model to the embedded
target hardware that controls the motor. The target model communicates with the host model to

7-2



Communication between Host and Target

receive commands from the user (for example, start or stop the motor). These are some common
operations that a target model available in Motor Control Blocksetperforms:

* Performs serial communication with the host model to receive the user commands and exchange
the binary data.
* Reads data from the position and current sensors attached to the motor and inverter.

* Controls the motor speed and torque by running the control algorithms and processing the
feedback.

* Generates the duty cycles inputs for the inverter.
* Enables fast serial data monitoring for debugging the signals.

Serial Communication Blocks

The host and target models interact with each other by using the following Motor Control Blockset
blocks that enable serial communication:

* Host Serial Receive
* Host Serial Setup
* Host Serial Transmit

Therefore, you can monitor, control, and customize the motor operation in real time. For example, you
can view the debug signals, stop or start the motor, and change the motor speed without repeated
deployment of the target model.

Fast Serial Data Monitoring

The Motor Control Blockset examples enable the fast serial data monitoring algorithm for performing
control and diagnostics through the host model. This algorithm enables you to observe data from the
target device at the same rate as the execution sample time (for example, PWM frequency of 20kHz).
This helps in diagnostics and analysis of the transients.

Evaluation boards often provide serial over USB connections that enable fast serial transfers. The
models running on the LaunchPad hardware boards, send signals like I, and I, currents over the
serial interface. Use the host model to receive these signals on your host computer. The Motor
Control Blockset examples that implement Field Oriented Control (FOC) for the F28379D LaunchPad
use mcb pmsm foc host model f28379d.slx. Examples that implement FOC for F28069M targets, use
mcb pmsm foc host model f28069m.slx. In addition, Motor Control Blockset provides other host
models for the application-based examples. Select the appropriate COM port that matches your
board, in the Serial Setup block of the host model.

Adjust the baud rate for your board:

* For F28027 LaunchPad, set the baud rate to 3.75e6.

* For F28069 LaunchPad, set the baud rate to 5.625e6.

e For F28377S LaunchPad, set the baud rate to 12e6.

o For F28379D LaunchPad, set the baud rate to 12e6.

After you deploy the target model to the target device, run the host model and observe the debug

signals updated at 20 kHz, on the time scope. You can use the same technique to monitor other
signals on other processors.



7 Concepts

Note SCI A is usually connected to the FTDI chip that allow serial transfers over USB on the
LaunchPad boards, docking stations, and ISO control cards.

Find Communication Port

Use these steps to find the serial communication port in the Device Manager of Windows PC, after
you connect the target hardware to your system:

1 Open Device Manager on your Windows PC.

2 Look for an entry under Ports (COM & LPT) titled USB Serial Port (COMX), where X is a
number. You can note down this number to configure the serial setup block in the host model.

- O

& Device Manager
File Action View Help

s FIEB HE BPIEX®

3 i.] Audio inputs and outputs
» B Computer
= Disk drives
» g Display adapters
= DVD/CD-ROM drives
¥ i’ Firmware
> @ Human Interface Devices
=3 |IDE ATA/ATAPI controllers
» E3 Keyboards
@ Mice and other pointing devices
» [l Monitors
> I3 Network adapters
~ § Ports (COM&LPT)
ﬁ Communications Port (COM1)
' Intel(R) Active Management Technolegy - SOL (COM3)
I # XD5100 Class USB Serial Port (COM3) I
» = Pnnt queues
3 n Processors
» WY Security devices
+ B Software devices
i| Sound, video and game controllers
S Storage controllers
> B3 System devices
w [ Texas Instruments Debug Probes
B XDS100 Class Auxiliary Port
B XD5100 Class Debug Port
@ Universal Serial Bus controllers
w i Universal 5enal Bus devices
§ BillBoard Device

If you face difficulty in finding the COM port, follow these steps to determine the COM port:



Communication between Host and Target

Open Device Manager on your Windows PC.

Look for an entry under Ports (COM & LPT) titled USB Serial Port (COMX), where X is a
number. If there are multiple COM ports, you can disconnect and reconnect the C2000 board and
observe the updates in Device Manager to determine the COM port.

Alternatively, follow these steps to determine the correct port name for the connected target
hardware:
a Right-click a communication port and click Properties.
In the Details tab, select Hardware Ids property.
¢ Ifthe port indicates the following IDs, the communication port belongs to the connected TI's
C2000™ controller hardware board:
* VID: 0403
* PID: A6DO
If you do not see or find the right port in Ports (COM & LPT), navigate to Texas Instruments
Debug Probes and follow these steps:
a Right-click XDS100 Class Auxiliary Port Properties and select Properties. Navigate to
Advanced tab and select Load VCP.

b Right-click XDS100 Class Debug Port Properties and select Properties. Navigate to
Advanced tab and clear Load VCP.

¢ Disconnect and reconnect the USB cable to the system and observe the updates in Device
Manager to determine the COM port. The system now displays the COM port that belongs to
the connected TI's C2000 controller hardware board.

Tip VCP stands for Virtual COM Port (for devices that support serial over USB communication).

7-3



7 Concepts

File  Action

anage - o

View Help

o mE HE B REXE

& Display adapters
e DVD/CD-ROM drives

Human Interface Devices ADS100 Class Auwxaliary Port Properties

== |DE ATASATAPI controllers

I Jungo Connectivity General  Advanced  Power Management Driver Details Everts

Keyboards

[l Mice and other pointing devices e XDS100 Class Auwliary Port

[ Monitors
I? Metwork adapters
~ [ Ports (COM & LPT)
ﬁ Communications Port (COM1)
ﬁ Intel(R) Active Management Technology - SOL (COM3)
i XDS100 Class USB Serial Port (COM21) [] Load vCP
= Print queues
] Processors
B Security devices
[ Sensors
B Software devices
i Sound, video and game controllers
&y Storage controllers
i3 System devices
w [ Texas Instruments Debug Probes

Configuration

Use these settings to ovenide nomal device behaviour.

Enable Selective Suspend

=

| L&l XD5100 Class Auxiliary Port |

L& XDS100 Class Debug Port
i Universal Serial Bus controllers

Cancel Help

5 If Texas Instruments Debug Probes do not appear in the Device Manager, expand Universal
Serial Bus controllers in the Device Manager and follow these steps:

Right-click TI XDS 100 Channel B and select Properties. Navigate to Advanced tab and
select Load VCP.

Right-click TI XDS 100 Channel A and select Properties. Navigate to Advanced tab and
clear Load VCP.

Disconnect and reconnect the USB cable to the system and observe the updates in Device
Manager to determine the COM port. The system now displays the COM port that belongs to
the connected TI's C2000 controller hardware board.

6 If Device Manager does not detect the target hardware, follow these steps:

Check that the target hardware is connected to the system.

Check if the device drivers are installed correctly. Generally, device drivers are installed with
the Code Composer Studio™ (CCS). Check if the CCS software is installed on your system.
Alternatively, try re-installing the device drivers suggested by Texas Instruments.

Check if the serial connection cable is intact.

If the problem persists, try connecting the hardware to another system and check if Device
Manager detects the hardware.



Communication between Host and Target

e Ifyou still face the problem, the target hardware may be faulty.

7-7



7 Concepts

Open-loop and Closed-loop Control

Speedref

This section describes the open-loop and closed loop motor control techniques.

Open-Loop Motor Control

Open-loop control (also known as scalar control or Volts/Hz control) is a popular motor control
technique that you can use to run any ac motor. This is a simple technique that does not need any
feedback from the motor. To keep the stator magnetic flux constant, we keep the supply voltage
amplitude proportional to its frequency.

Vref V
e VOlts-by-Hertz DC
Duty Cycles
Ref i
SpeT'zd Fres PWM
e —
Freg®ef Generator [
Position 0,
Generator

Motor

The preceding figure shows an open loop control. The power circuit consists of a PWM voltage fed
inverter supplied by a DC source. We do not use any feedback signal for control implementation. We
use the reference speed to determine the frequency of the stator voltages. We compute the voltage
magnitude as proportional to the ratio of rated voltage and rated frequency (commonly known as
Volts/Hz ratio), so that the flux remains constant.

Am o VS/fS
where:

1 A, is the rated flux of the motor in Wh.
2 V,is the stator voltage of the AC motor in Volts.
3 fsis the frequency of the stator voltage of the AC motor in Hz.

We can express the speed for an AC motor as:

60 x fg
p

where:



Open-loop and Closed-loop Control

¢ Speed(rpm) is the mechanical speed of the AC motor in rpm.
* fsis the frequency of the stator voltage and currents of the AC motor in Hz.

* pis the number of pole pairs of the motor.

You can use the preceding expression to determine the frequency of reference voltages for a required
speed (for a given machine).

fref R RPMre]c
- 60

We use this frequency to generate PWM reference voltages for the inverter. We compute the
magnitude of voltages by maintaining Volts/Hz ratio as:

Vref —

Vrated ) fre f
frated

When using the per-unit system representation, we consider Vrated as the base quantity, which
usually corresponds to 1PU or 100% duty cycle. Depending on the modulation technique (either

Sinusoidal PWM or Space Vector PWM), you may need an additional gain ((%) for sinusoidal PWM).

At lower speeds, we need a minimum boost voltage (15% or 25% of the rated voltage), to overcome
the effect of the stator resistance voltage drop.

You can use the open-loop control in the applications where the dynamic response is not a concern,
and a cost-effective solution is required. Open-loop motor control does not have the ability to consider
the external conditions that can affect the motor speed. Therefore, the control system cannot
automatically correct the deviation between the desired and the actual motor speed.

Note The scalar control implementation does not consider the compensation of voltage drop due to
the stator resistance and filed weakening.

Closed-Loop Motor Control

Closed-loop control considers the system feedback for control. The closed-loop control of the motor
considers feedback of the motor signals like current and position. The control system uses the
feedback signals to regulate the voltage (applied to the motor) to keep the motor response at a
reference value.



7 Concepts

ref
Speedf -

7-10

Pl controller Pl controller
(speed) (currentlq)

Duty Cycles

h Pl controller Inverse park Space vector
15*'=0 (current Id) transform generator

GELS Clarke
transform transform

Sine-cosine
lookup

Wy Speed 6, 6 Sensor Position
measurement decoder Feedback

Field-Oriented Control (FOC) (or vector control) is a popular closed-loop system that is used for
motor control applications. FOC is a technique that is used to implement closed-loop torque, speed,
and position control of motors. This technique also provides good control capability over the full
torque and speed ranges. The FOC implementation needs transformation of stator currents from the
stationary reference frame to rotor flux reference frame.

Speed control and torque control are the commonly used control modes of FOC. Whereas, the
position control mode is less common. Most of the traction applications use the torque control mode
in which the motor control system follows a reference torque value. In the speed control mode, the
motor controller follows a reference speed value and generates a torque reference for the torque
control that forms an inner subsystem. Whereas, in the position control mode, the speed controller
forms the inner subsystem.

You need real time feedback of the currents and rotor position to implement an FOC algorithm. You
can make the current and position measurements by using sensors. You can also use the sensorless
techniques that use the estimated feedback values instead of the actual sensor-based measurements.

Closed-loop control uses the real-time position and stator current feedback to tune the speed
controller and current controller and change the duty cycles of the inverter. Therefore, the corrected
three-phase voltage supply (that runs the motor) corrects the motor feedback deviation from the
desired value.

Open-Loop to Closed-Loop Transitions

Some applications require the motor to start with an open-loop control. Once the motor achieves the
minimum required stability in the open-loop, the control system shifts to closed-loop.

In a quadrature encoder-based position sensing system, the motor starts up in open-loop and
transitions to closed-loop once index pulse is detected.



Open-loop and Closed-loop Control

In a sensorless position control, the motor starts running at 10% of the base speed in the open-loop.
After the reference switch goes beyond 10% of base speed, the control system transitions from open-
loop to closed-loop.

To ensure smooth transition from open-loop to closed-loop, the PI controllers reset and start from the
initial condition same as the open loop outputs.

7-11



7 Concepts

Current Sensor ADC Offset and Position Sensor Calibration

7-12

This section explains about ADC and position sensor offset calibration.

Current Sensor ADC Offset Calibration

In an inverter, signal conditioning for the current sensor introduces an offset voltage in the ADC input
to measure both positive and negative current. This offset value is different for each target hardware
because it depends on the tolerances of the components in the signal sensing and conditioning
circuit. We recommend you to measure the current sensor ADC offset for the target hardware.
Current sensor ADC offset is represented in ADC counts that corresponds to zero ampere current.

See the example “Run PMSM in Open-loop Control and Calibrate ADC Offset” on page 5-2 to
manually measure the ADC offset value. In the Motor Control Blockset examples, update the
measured value in the inverter.CtSensAOffset and inverter.CtSensBOffset variables in the model
initialization scripts. This function updates the inverter.CtSensAOffset and inverter.CtSensBOffset
with the default values.

The examples in Motor Control Blockset calculate the current sensor ADC offset in the hardware
initialization subsystem. In the model initialization script, inverter,ADCOffsetCalibEnable = 1 enables
the current sensor offset calibration in the target hardware during initialization. In the hardware
initialization subsystem, ADC channels reads the input current multiple times and averages them.
The current controller uses this averaged ADC offset value. In the model initialization script,
inverter. ADCOffsetCalibEnable = 0 disables the current sensor offset calibration and uses the values
from the initialization script.

Note Always measure the current sensor ADC offset when the motor is not running. We recommend
you to unplug the electric wires connected to the motor.

Position Sensor Offset Calibration for Quadrature Encoder and Hall
Sensor

The controller requires the position sensor offset computation to determine an accurate real time
feedback of the rotor position, and therefore, implement the Field-Oriented Control (FOC) algorithm
correctly. We recommend that you use the examples for offset calibration to compute the position
offset before running any other example that uses FOC.

Hall sensor offset is the angle between the rotor’s d-axis and the position detected by the Hall sensor.
You can use the offset to correct and compute an accurate position of the rotor’s d-axis.

Quadrature encoder sensor offset is the angle between the rotor’s d-axis and encoder index pulse
position detected by the quadrature encoder.

Motor Control Blockset offers examples like and to obtain the accurate rotor position for
implementing the control algorithm. The offset computation examples use a unique algorithm along
with open-loop control to compute the position offsets of the position sensors (Hall or quadrature
encoder). Open-loop control (also known as scalar control or volt/Hz control) is a popular motor
control technique that can be used to run any AC motor. This is a simple technique that does not need
any feedback from the motor. To ensure a constant stator magnetic flux, we keep the supply voltage
amplitude proportional to its frequency. The following figure shows an overview of the open-loop
control. See “Open-loop and Closed-loop Control” on page 7-8 for more details.



Current Sensor ADC Offset and Position Sensor Calibration

Voltage
supply

Vref

g Volts-by-Hertz
Duty Cycles
Speedref fret PWM

Generator

Position
ll  Generator

ee_oDenloOD

Offset
e_feedback M Computations

5]

Motor (No Load)
- 6 Sensor " Position
I decoder Feedback

By the using this algorithm, the offset calibration examples detect the position offset:

¢ Check if the motor is in a no-load condition.

» Start and run the motor in open-loop at a very low speed (for example, 60rpm). At a low speed, the
rotor d-axis closely aligns with rotating magnetic field of the stator.

* Measure the feedback position of the available position sensor (Hall or quadrature encoder).

* Compare the open-loop position with feedback position and check that the phase-sequence is
correct. If required, correct the motor phase-sequence.

* Compute the Hall sensor position offset by obtaining the difference between the open-loop
position and feedback position.

* Run the motor in the open-loop for few cycles and stop the motor. Ensure that the encoder index
pulse is detected at least once. Lock the rotor in d-axis. The quadrature encoder position offset is
same as the position feedback. This outputs the quadrature encoder mechanical offset position.

10 8 Theta_s_positon_sensor m Theta_e_motor @ Theto_e_open_lcop

m_open_loop ’ /

m_pmsm

m_position_sensor

Position Offset > I %

7-13



7 Concepts

7-14

The preceding figure shows the comparison of open-loop position from control algorithm along with
the actual position of the motor. The figure also shows the feedback from the position sensor. The
position offset, which is the difference between the open-loop position and feedback position from
sensor, is computed by the algorithm provided in the offset calibration models.

* Update the measured offset in ‘pmsm.PositionOffset’ variable in model initialization script of the
examples.

» For parameter estimation, update the measured Hall offset in the Hall Offset field of
"mch param est host read" model.

Note The example outputs the electrical position offset. Whereas, the example outputs the
mechanical position offset.

For steps to compute the offsets, see these examples:

“Run PMSM in Open-loop Control and Calibrate ADC Offset” on page 5-2



Per-Unit System

Per-Unit System

Motor Control Blockset uses these International System of Units (SI):

Quantity Unit Symbol
Voltage volt Vv
Current ampere A
Speed radians per second rad/s
revolutions per minute rpm
Torque newton-meter N.m
Power watt W

Note The SI Unit for speed is rad/s. However, most manufacturers use rpm as the unit to specify the
rotational speed of the motors. Therefore, Motor Control Blockset prefers rpm as the unit of
rotational speed over rad/s. However, you can use either one based on your preference.

What is Per-Unit System

The Per-Unit (PU) system is commonly used in electrical engineering to express the values of
quantities like voltage, current, power, and so on. It is used for transformers and AC machines for
power system analysis. Embedded systems engineers also use this system for optimized code-
generation and scalability, especially when working with fixed-point targets.

For a given quantity (such as voltage, current, power, speed, and torque), the PU system expresses a
value in terms of a base quantity:

expressed in SI units
base value

quantity expressed in PU = quantity

Generally, we select the nominal values of a system as the base values. Sometimes, we may also
select the maximum measurable value as the base value. Thereafter, all signals are represented in PU,
with respect to the selected base value.

For example, in a motor-control system, if the selected base value for current is 10A, then the PU
representation of the 2A current is expressed as (2/10) PU = 0.2 PU.

Similarly,

quantity expressed in SI units = quantity expressed in PU x base value

For the preceding example, the SI unit representation of 0.2 PU = (0.2 x base value) = (0.2 x 10) A.

Per-Unit System and Motor Control Blockset

Motor Control Blockset uses these conventions to define the base values for voltage, current, speed,
torque, and power.

7-15



7 Concepts

Quantity

Representation

Convention

Base voltage

Vbase

This is the maximum phase
voltage supplied by the inverter.

Generally, it is
PU System.V base = for Space
inverter.V dc

A3
Vector PWM and
PU System.I base = inverter.I m
for Sinusoidal PWM.

Base current

Ibase

This is the maximum current
that can be measured by the
ADC connected to the inverter.

Generally, but not necessarily, it
is I oy Of the inverter.

Base speed

Nbase

This is the nominal (or rated)
speed of the motor. This is also
the maximum speed that the
motor can achieve at the
nominal voltage and nominal
load without field-weakening
operation.

Base torque

Tbase

This is torque that is
mathematically derived at the
base current. Physically, the
motor may or may not be able to
produce this torque.

Generally, it is

PU System.T base = %

X pmsm.p X pmsm.FluxPM

x PU System.I base

Base power

Pbase

This is the power derived by the
base voltage and base current.

Generally, it is
PU System.P base = %

x PU System.V base

x PU System.I base

where:

7-16



Per-Unit System

* V. is the DC voltage that you provide to the inverter.

* I is the maximum current measured by the ADCs connected to the current sensors of the
inverter.

* pis the number of pole pairs available in the PMSM.
* M,y is the permanent magnet flux linkage of the PMSM.

For the voltage and current values, you can generally consider the peak value of the nominal
sinusoidal voltage (or current) as 1PU. Therefore, the base values used for voltage and current are

the RMS values multiplied by /2, or the peak value measured between phase-neutral.

By using the PU system, the calculations are simplified. Motor Control Blockset uses these base value
definitions for the PU system related conversions performed by the algorithms used in the examples.
It stores the preceding variables in a structure called “PU_System” in the MATLAB workspace.

Why Use Per-Unit System Instead of Standard Sl Units

Per-unit representation of signals has many advantages over the SI units. This technique:

* Improves the computational efficiency of the code-execution, and therefore, it is a preferred
system to use for the fixed-point targets.

* Creates a scalable control algorithm across many systems.

7-17






Hardware Connections

* “Hardware Connections” on page 8-2
* “Dual Motor (Dyno) Control for PMSM” on page 8-13



8 Hardware Connections

Hardware Connections

8-2

Motor Control Blockset supports the following hardware configurations:

F28069 control card configuration
LAUNCHXL-F28069M configuration
LAUNCHXL-F28379D configuration
C2000 MCU Resolver Eval Kit [R2]

A W N -

F28069 control card configuration

The configuration includes the following hardware components:

* Texas InstrumentsDRV8312-69M-KIT inverter board

* Texas Instruments F28069 microcontroller control card

* Motor BLY171D (supports both Hall and quadrature encoder sensors)
*  Motor BLY172S (supports Hall sensor)

* Quadrature encoder

* DC power supply

Note Due to auxiliary power supply related hardware issues, the DRV8312-69M-KIT does not support
the position sensors connected to some motors (for example, Teknic M-2310P motor).

The following steps describe the hardware connections for the F28069 control card configuration:

1 Connect the F28069 control card to J1 of DRV8312-69M-KIT inverter board.
2 Connect the motor three phases, to MOA, MOB, and MOC on the inverter board.
3 Connect the DC power supply (24V) to PVDDIN on the inverter board.

Warning Be careful when connecting PVDD and GND to the positive and negative connections of the
DC power supply. A reverse connection can damage the hardware components.




Hardware Connections

From
QEP

Hall

J8

g L
indék 3 / 2% P ™R

. e @- { m-wpie
U-pee-1ET & : -

VRI =
& c7 Wi =8

MOTOD
Vel ] — To
Vel M | motor

MOA

DC
power
supply

DRV8312EVM
‘6517813 RevD

The following step describes about interfacing the quadrature encoder sensor:
* Connect the quadrature encoder pins (G, I, A, 5V, B) to J4 on the inverter board.

To implement position-sensing by using Hall sensor, use a motor that has inbuilt Hall sensors (for
example, BLY171D and BLY172S). The following steps describe the steps to interface the Hall sensor:

* Connect the Hall sensor encoder output to J10 on the inverter board.

8-3



8 Hardware Connections

8-4

| P

ENCI ] encoder

I (Color codes of

14

P PR (P

J10

b e e ol ool o Jig e

T

DRV8312-69M-KIT inverter

We recommend the following jumper settings for DRV8312-69M-KIT inverter board when working
with Motor Control Blockset. You can customize these settings depending on the application
requirements. For more information about these settings, see the device user guide available on
Texas Instruments website.

+ JP1-VR1

* JP2-ON

* JP3 - OFF

* JP4 - OFF

* JP5- OFF

« M1-H

* J2-OFF



Hardware Connections

J3 - OFF
RSTA - MCU
RSTB - MCU
RSTC - MCU

LAUNCHXL-F28069M and LAUNCHXL-F28379D configurations

The LAUNCHXL-F28069M configuration includes the following hardware components:

LAUNCHXL-F28069M controller

BOOSTXL-DRV8305 (supported inverter)

Teknic motor M-2310P (supports both Hall and quadrature encoder sensors)
Motor BLY171D (supports both Hall and quadrature encoder sensors)
Motor BLY172S (supports Hall sensor)

DC power supply

The LAUNCHXL-F28379D configuration includes the following hardware components:

LAUNCHXL-F28379D controller

BOOSTXL-DRV8305 and BOOSTXL-3PHGANINV (supported inverters)
Teknic motor M-2310P (supports both Hall and quadrature encoder sensors)
Motor BLY171D (supports both Hall and quadrature encoder sensors)
Motor BLY172S (supports Hall sensor)

DC power supply

The following steps describe the hardware connections for the LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations:

1

Attach the BOOSTXL inverter board to J1, J2, ]J3, J4 on the LAUNCHXL controller board.

Note Attach the inverter board to the controller board such that J1, J2 of BOOSTXL aligns with
J1, ]2 of LAUNCHXL.

Connect the motor three phases, to MOTA, MOTB, and MOTC on the BOOSTXL inverter board.
Connect the DC power supply (24V) to PVDD and GND on the BOOSTXL inverter board.

Warning Be careful when connecting PVDD and GND to the positive and negative connections of the
DC power supply. A reverse connection can damage the hardware components.




8 Hardware Connections

BOOSTXL-
DRV8305EVM

From
Quadrature
~" Encoder

From
-~ Hall
(GPIO)

LaunchPad XL

c2000

BOOSTXL-
DRV8305EVM



Hardware Connections

DC power supply
5 3 o To motor

v

pUDD MOTA® MOTB MOTC
a4 0205 By

g
L%

= Ciu Ci7
. R4 .lmfi = DRUS305

g T

gi; rHlH)HIH!1 Lol tad bt
o1 C7wxt C13 C14 C16.
R13 cef |

€22  C2uy
R1é @ |

c23R2Ccalk | - 4

‘- ?12: Ll -‘Csdlllllililll nFﬁULT

- RI8 — s 15
Cc25
R1S

L o L
C R

il
T

up-K

n )y piTy pUEAY FUOF
‘ : i

b o= | L:J R1 R3 R7 M (D1
S 1|
A c2s

| JiEd

|
€ ¢
€ ¢
€ ¢
¢ ¢
¢ ¢
€ 4«
€ ¢
€ ¢
€ ¢

MDBUOO3A
BOOSTXL-DRUB30SEUH

The following step describes about interfacing the quadrature encoder sensor:

* Connect the quadrature encoder pins (G, I, A, 5V, B) to QEP_A on the LAUNCHXL controller
board.

To implement position-sensing by using Hall sensor, use a motor that has inbuilt Hall sensors (for
example, Teknic motor M-2310P, BLY171D and BLY172S). The following steps describe the steps to
interface the Hall sensor:

* Connect the Hall sensor encoder output to a GPIO port that is configured as eCAP, on the
LAUNCHXL controller board.



8 Hardware Connections

< ENC A : - _]I _|ENCA
= |
ence | : ENCE Quadrature
<< < =
' enc: 1 Quadrature | I enci | encoder
g I encoder g _i SR (Color codes of
+5VDC . i II connectors may vary)
E ano ] ! _]l GND -
[# i1 HALL A
HALL B 1 _: HALL B :
@, | I:':'| 1 HaLLe |
o — HALLC o I
i 1 = 4 I Hall
(@] .svoc | Hall I el
i | | I
—_— GND } GND
LAUNCHXL-F28069M or LAUNCHXL-F28069M or
LAUNCHXL-F28379D controller LAUNCHXL-F28379D controller

8-8

We recommend the following jumper settings for the LAUNCHXL inverter boards when working with
Motor Control Blockset. You can customize these settings depending on the application requirements.
For more information about these settings, see the device user guide available on Texas Instruments
website.

For LAUNCHXL-F28069M controller

. JP1-ON
« JP2-ON
. JP3-ON
« JP4-ON
« JP5-ON
« JP6 - OFF
. JP7-ON

For LAUNCHXL-F28379D controller

. JP1-ON
. JP2-ON
. JP3-ON
« JP4-ON
« JP5-ON
« ]P6 - OFF



Hardware Connections

Instructions for Dyno (Dual Motor) Setup

1

Connect the three phases of Motorl and Motor2, to MOTA, MOTB, and MOTC on the
corresponding BOOSTXL inverter boards.

Attach the BOOSTXL inverter board (connected to Motorl) to J1, J2, J3, J4 on the LAUNCHXL
controller board.

Note Attach the inverter board to the controller board such that J1, J2 of BOOSTXL aligns with
J1, ]2 of LAUNCHXL.

Attach the BOOSTXL inverter board (connected to Motor2) to J5, J6, J7, ]J8 on the LAUNCHXL
controller board.

Note Attach the inverter board to the controller board such that J1, J2 of BOOSTXL aligns with
J5, J6 of LAUNCHXL.

Connect the DC power supply (24V) to PVDD and GND on both BOOSTXL inverter boards.

Note Connect the PVDD and GND on the BOOSTXL boards (for MOTOR1 and MOTOR?2) to the
same power supply. When one motor consumes power, the second motor generates power. If you
connect both motors to the same power supply, the power generated by one motor is consumed
by the other motor. The DC power supply delivers power only for the losses.

Connect the quadrature encoder pins of Motorl (G, I, A, 5V, B) to QEP_A on the LAUNCHXL
controller board.

Connect the quadrature encoder pins of Motor2 (G, 1, A, 5V, B) to QEP_B on the LAUNCHXL
controller board.

Warning Be careful when connecting PVDD and GND to the positive and negative connections of the
DC power supply. A reverse connection can damage the hardware components.

8-9



8 Hardware Connections

BOOSTXL-DRV8305EVM BOOSTXL-DRV8305EVM
(Motorl) (Motor2)

From
Quadrature
~ Encoder of
Motorl

From
Quadrature
“ Encoder of
Motor2

LaunchPad XL

C2000

BOOSTXL-DRV8305EVM BOOSTXL-DRV8305EVM
(Motorl) (Motor2)

Quadrature
LI encoder - Quadrature encoder
I (Color codes of connectors may vary)
ENCE ENCEB
o Enc1 o' enci |
+5VDC I +5VDC I
1 |
GND | oo | |
ENC A - B —ENCA -—
1 |
ENCB ENC B
@, ENCI ! @, enct |l
% I % ul| ﬁ
+5VDC +5VDC I
|
Sho.d Quadrature GND Quadrature encoder
L encoder L (Color codes of connectors may vary)
LAUNCHXL-F28069M or LAUNCHXL-F28069M or
LAUNCHXL-F28379D controller LAUNCHXL-F28379D controller

C2000 MCU Resolver Eval Kit [R2]

The C2000 MCU Resolver Eval Kit [R2] configuration includes the following hardware components:

* LAUNCHXL-F28069M controller
* BOOSTXL-DRV8305 (supported inverter)

8-10



Hardware Connections

DC power supply
C2000 MCU Resolver Eval Kit [R2]
Resolver encoder

The following steps describe the hardware connections for the MCU Resolver Eval Kit [R2] board:

Connect DC power supply (15V) to J2 on the MCU Resolver Eval Kit board.

Connect the resolver output pins for sine wave to pins 1, 2 of J10 on the MCU Resolver Eval Kit
board.

Connect the resolver output pins for cosine wave to pins 3, 4 of J10 on the MCU Resolver Eval Kit
board.

Connect the resolver input pins to the PWM dither and PWM SINE pins of J10 on the C2000™
MCU Resolver Eval Kit board.

The following step describes the hardware connection for the LAUNCHXL-F28069M controller board:

Connect the LAUNCHXL-F28069M controller board to a computer via USB port.

The following steps describe the hardware connections between the MCU Resolver Eval Kit [R2] and
LAUNCHXL-F28069M controller boards:

1

Connect the COS(T2) pin on MCU Resolver Eval Kit [R2] to pin 24 of ]3 on the LAUNCHXL-
F28069M controller board.

Connect the SIN(T8) pin on MCU Resolver Eval Kit [R2] to pin 29 of J3 on the LAUNCHXL-
F28069M controller board.

Connect the GPIO2 pin on MCU Resolver Eval Kit [R2] to pin 38 of J4 on the LAUNCHXL-
F28069M controller board.

8-11



8 Hardware Connections

Pins 1, 2 — Sine wave
Pins 3, 4 — Cosine wave
Pins 6, 7 — PWM_SINE, PWM_dither
— Resolver input
DC power

COS(T2) to Pin 24 of I3
supply (15\(_)_

SIN(T8) to Pin 29 of J3

=8
5 it

jigd; fli=
31 Red RILL

R4l

u

dre e

”I' ) e
Resolver Eval Kit [R2]
Cc2eee MCuU

ceoB®

8-12



Dual Motor (Dyno) Control for PMSM

Dual Motor (Dyno) Control for PMSM

This example implements the Field-Oriented Control (FOC) technique to control two three-phase
Permanent Magnet Synchronous Motor (PMSM) motors coupled together in a dyno setup. Motorl
runs in the closed-loop speed control mode. Motor2 runs in the torque control mode and loads Motor
1 because they are mechanically coupled. You can use this example to test a motor in different load
conditions.

The example simulates two motors that are connected back-to-back. You can use a different speed
reference for Motorl and different torque reference or current reference (Iq) for Motor2. Motorl
runs at the reference speed for the load conditions provided by Motor2 (with different current
reference).

The example runs in the controller hardware board. You can input the speed reference for Motorl
and current reference for Motor2 using a host model. The host model uses serial communication to
communicate with the controller hardware board.

Current control loops in Motorl and Motor2 control algorithms are offset by Ts/2, where Ts is the
control-loop execution rate.

Serial
communication

IPC

Host

model

Motor

under test

Models
The example includes this model:
* mcbh_pmsm_foc_f28379d_dyno

You can use this model for both simulation and code generation. You can use the "open_system"
command to open the Simulink® model. For example, use this command for a F28379D based
controller:

open_system('mcb _pmsm foc f28379d dyno.slx');

8-13



8 Hardware Connections

HIWLINT

Code generation

Intermupt

Simulation

Lk

PMSM Motor-Dyno

Note: This example requires a Tl F28379D LaunchPad with two BOOSTXL-DRV8305 booster pack
connected to a PMSM Motor-Dyno with QEP Sensors

Hardware Init
| |

E-

)

Hearibeat LED

8-14

o Trigger()
SCI_Rx_INT{) .—b Idq_ref_PU
laCffset_motor1 = — Desired Spesd > _:'- Spead_Ref_PU H Duty Cycles motor!_duty  sim_fb_motor [—-<{Sim_fb_motor]
R| ﬂ Rt IdqRsf_PU Feedbacks_sim
IbOffset_motor1 Desriedlqref - [T )
—> Speed_Meas_PU = Speed_fo W motor2_duty sim_fh_dyno —-<fSim_fb_motor2]
I CiCl mir2_dsbug
Senal Rooer Parse SCI Rx

IbCffset_motor2 enal Receive Speed Control for metor1 Current control for motor Motor1 and Motor2 coupled

laCffset_motor2 Simulation Input
Explore more:
1. Edit motor & inverter parameters

SpesdRef 2. Use Offset computation model to find out
1200 Spaadraf position offset for both motors.
3. Update offset in |nit script to variable
Motor speed ref in rpm 'pmsm_motori.PositionOffset’
‘pmsm_maotor2. PositionOffset’
Enabl e— i
nable Data +— _ TR0 Doty Gyeles ; guul?, ?ep\?y &_st:rt ol
> In_Ref_PU In_ref_PU ontrol moter via host model
EnClosedLoop s < .
IgRef_PU mir2_debug|
1 IgRaf ] o _
EnMrCil | q » Speed_Meas_PU .—> Feadbacks_sim [mir2_debug]]
=) = o
Motor2 Ig_refin A
EnMtr2TrqCr Speed Limit for motor2 Current control for motor2
Signal Packing

Copyright 2020 The MathWorks, Inc.

Required MathWorks® Products

To simulate model:

Motor Control Blockset™

To generate code and deploy model:

Motor Control Blockset™

Embedded Coder®

Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters for both Motorl and Motor2. We provide default motor parameters
with the Simulink® model that you can replace with the values from either the motor datasheet or
other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset™ parameter estimation tool. For instructions ,
see “Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool” on
page 6-2..

2. Update the motor parameters (that you obtained from the datasheet, other sources, or parameter
estimation tool) and inverter parameters in the model initialization script associated with the
Simulink® model. For instructions to update the script, see “Estimate Control Gains from Motor
Parameters” on page 3-2.

For this example, update the motor parameters for both the motors in the model initialization script.



Dual Motor (Dyno) Control for PMSM

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. Click Run in the Simulation tab to simulate the model.

3. Click Data Inspector in the Simulation tab to view and analyze the simulation results.

4. Input a different speed reference for Motor1 and a different current reference (load) for Motor2.
Observe the measured speed and other logged signals in the Data Inspector.

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The pre requisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

The example supports this hardware configuration. Use the target model name (highlighted in bold)
to open the model for the corresponding hardware configuration, from the MATLAB® command
prompt.

« LAUNCHXL-F28379D controller + 2 BOOSTXL-DRV8305 inverters:
mcbh_pmsm_foc £28379d_dyno

For connections related to the preceding hardware configuration, see “Instructions for Dyno (Dual
Motor) Setup” on page 8-9.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverter. ADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions to compute the ADC offset, see “Run 3-Phase AC Motors in
Open-loop Control and Calibrate ADC Offset” on page 4-52.

4. Compute the quadrature encoder index offset value and update it in the model initialization scripts
associated with the target model. For instructions to compute the quadrature encoder offset, see
“Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-45.

For this example, update the QEP offset values in the pmsm_motorl.PositionOffset and
pmsm_motor2.PositionOffset variables in initialization script.

8-15



8 Hardware Connections

5. Open the target model. If you want to change the default hardware configuration settings for the
model, see “Model Configuration Parameters” on page 2-2.

6. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

7. Click Build, Deploy & Start in the Hardware tab to deploy the model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can

also use the "open_system" command to open the host model:

open_system('mcb pmsm foc host model dyno.slx');

Note:

1. Salect the serial port in 'Host Serial Setup’ (Blue Color)

2. Use "Motor Start / Stop” switch to control motor.

3. Input speed request for Motor 1 using "Motor 1 Reference Speed’ knob.
4. Input Ig ref for Motor 2 using 'Matar 2 - lgRef (PUY Knob

4. Observe the debug signals in scope.

1200

Motor 1 - Reference Speed (RPM)

HOST

8-16

TX

Motor 2 - Iq Ref (A)

On
Start / Stop Motor 1

Copyright 2020 The MathWorks, Inc.

PMSM Dyno Control Host

®) Mitr1:
Mtr1:
Mtri:
Mitr1:
Mtr1:
Mitr1:
Mtr2:
Mtr2:
Mitr2:
Mtr2:
Mitr2:

Debug signals

Speed ref & Speed feedback
Id ref & |d feedback
Iq ref & g feedback
Vd & Vg

la & b feedback
Pm & Te

Id ref & |d feedback
Iq ref & g feedback
Vd & Vg

la & b feedback
Pm & Te

Mir1&Mtr2: Pm

Mtr1&Mir2: Te

Mtr1&Mtr2: Pos

Mtr1&Mtr2: la

Mtr1 Speed ref & Mtr2 Speed fb

Scope (Per-Unit)

Debug1 {51 units)

Debug? {51 units)

)

h

h

1
1

R

h

SelectedSignals



Dual Motor (Dyno) Control for PMSM

9. In the Host Serial Setup block mask of the host model, select a Port name.

10. Click Run in the Simulation tab to run the host model.

11. Change the Start / Stop Motor 1 switch position to On, to start running the motor.

12. Update the Reference Speed for Motorl and Current Reference for Motor2 in the host model.

13. Select the debug signals that you want to monitor, to observe them in the Time Scope of host
model.

8-17






	Product Overview
	Model Configuration Parameters
	Model Configuration Parameters
	Solver Configuration
	ADC Interface Configuration
	PWM Interface Configuration
	Hall Sensor Interface Configuration
	Quadrature Encoder Interface Configuration
	Serial Communication Interface Configuration


	Estimate Control Gains from Motor Parameters
	Estimate Control Gains from Motor Parameters
	Field-Oriented Control Autotuner
	Simulink Control Design
	Model Initialization Script


	Implement Motor Speed Control by Using Field-Oriented Control (FOC)
	Implement Motor Speed Control Using Field-Oriented Control (FOC)
	Models
	Required MathWorks Products
	Prerequisites
	Simulate Model
	Generate Code and Deploy Model to Target Hardware

	Sensorless Field-Oriented Control of PMSM Using Sliding Mode Observer and Flux Observer
	Field-Oriented Control of PMSM by Using Hall Sensor
	Field Oriented Control of PMSM by Using Quadrature Encoder
	Field Weakening Control (with MTPA) of PMSM
	Hall Offset Calibration for PMSM Motor
	Quadrature Encoder Offset Calibration for PMSM Motor
	Run 3-Phase AC Motors in Open-loop Control and Calibrate ADC Offset
	Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation
	Monitoring Resolver Using Serial Communication
	Field Oriented Control of PMSM by Using SI Units
	Modeling Switching Dynamics in the Inverter by using Simscape Electrical
	Tune PI controllers by Using Field Oriented Control (FOC) Autotuner
	Use Motor Control Blockset™ to Generate Code for a Custom Target

	Run PMSM in Open-loop Control and Calibrate ADC Offset
	Run PMSM in Open-loop Control and Calibrate ADC Offset
	Supported Hardware
	Hardware Connections
	Required MathWorksProducts
	Model
	Pre-requisites for Running the Motor
	Run Models to Implement Open-loop Control
	Run Models to Calibrate ADC Offset


	Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool
	Estimate Motor Parameters by Using Motor Control Blockset Parameter Estimation Tool
	Pre-requisites
	Supported Hardware
	Required MathWorksProducts
	Prepare Hardware
	Parameter Estimation Tool
	Prepare workspace
	Deploy Target Models
	Estimate Motor Parameters
	Save Estimated Parameters


	Concepts
	Communication between Host and Target
	Host Model
	Target Model
	Serial Communication Blocks
	Fast Serial Data Monitoring
	Find Communication Port

	Open-loop and Closed-loop Control
	Open-Loop Motor Control
	Closed-Loop Motor Control
	Open-Loop to Closed-Loop Transitions

	Current Sensor ADC Offset and Position Sensor Calibration
	Current Sensor ADC Offset Calibration
	Position Sensor Offset Calibration for Quadrature Encoder and Hall Sensor

	Per-Unit System
	What is Per-Unit System
	Per-Unit System and Motor Control Blockset
	Why Use Per-Unit System Instead of Standard SI Units


	Hardware Connections
	Hardware Connections
	F28069 control card configuration
	LAUNCHXL-F28069M and LAUNCHXL-F28379D configurations
	C2000 MCU Resolver Eval Kit [R2]

	Dual Motor (Dyno) Control for PMSM


